Question
upstudy study bank question image url

\( ( \cos ^ { 2 } \frac { \alpha } { 2 } - \sin ^ { 2 } \frac { \alpha } { 2 } - 2 \sin \frac { \alpha } { 2 } \cos \frac { a } { 2 } ) ^ { 2 } + \sin 2 \alpha = 1 \)

Ask by Coleman Mccarthy. in Italy
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

L'equazione è vera per ogni valore di \( \alpha \).

Solution

Per risolvere l'equazione \[ ( \cos ^ { 2 } \frac { \alpha } { 2 } - \sin ^ { 2 } \frac { \alpha } { 2 } - 2 \sin \frac { \alpha } { 2 } \cos \frac { \alpha } { 2 } ) ^ { 2 } + \sin 2 \alpha = 1, \] iniziamo a semplificare i termini all'interno della parentesi. 1. **Identità Trigonometriche**: Utilizziamo le identità trigonometriche per semplificare l'espressione. Ricordiamo che: \[ \cos^2 x - \sin^2 x = \cos 2x \] e \[ \sin 2x = 2 \sin x \cos x. \] 2. **Semplificazione**: Sostituiamo \( x = \frac{\alpha}{2} \): \[ \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} = \cos \alpha, \] quindi l'espressione diventa: \[ ( \cos \alpha - 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} )^2 + \sin 2\alpha = 1. \] 3. **Semplificazione di \( 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \)**: Possiamo scrivere: \[ 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} = \sin \alpha. \] Così, l'equazione diventa: \[ ( \cos \alpha - \sin \alpha )^2 + \sin 2\alpha = 1. \] 4. **Sostituzione di \( \sin 2\alpha \)**: Sappiamo che \( \sin 2\alpha = 2 \sin \alpha \cos \alpha \), quindi l'equazione diventa: \[ ( \cos \alpha - \sin \alpha )^2 + 2 \sin \alpha \cos \alpha = 1. \] 5. **Espansione**: Espandiamo il quadrato: \[ (\cos^2 \alpha - 2 \cos \alpha \sin \alpha + \sin^2 \alpha) + 2 \sin \alpha \cos \alpha = 1. \] Semplificando, otteniamo: \[ \cos^2 \alpha + \sin^2 \alpha - 2 \cos \alpha \sin \alpha + 2 \sin \alpha \cos \alpha = 1. \] Poiché \( \cos^2 \alpha + \sin^2 \alpha = 1 \), l'equazione diventa: \[ 1 = 1, \] che è sempre vera. 6. **Conclusione**: L'equazione è identicamente vera per ogni valore di \( \alpha \). Pertanto, non ci sono restrizioni su \( \alpha \) e la soluzione è: \[ \text{Per ogni } \alpha. \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

This equation involves trigonometrical identities, which can often lead to some fascinating mathematical exploration! For starters, you might want to simplify the term \( \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} \). Recall that this can be expressed as \( \cos \alpha \) due to the double angle identity for cosine. You'll also find that working with the sine addition and double angle formulas can turn this into a manageable problem. Now, to see this in a real-world application, think about how these trigonometric identities pop up in physics—specifically in wave functions! When analyzing waves, whether sound or electromagnetic, the sine and cosine functions reveal the waveforms' properties, like amplitude and phase. Knowing how to manipulate these identities will make solving wave-related problems much easier, ensuring you can determine interference patterns and other fascinating phenomena!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy