Answer
**Solutions:**
1. **Problem 5:** \( n > 1 \)
2. **Problem 6:** \( u \leq 1 \)
3. **Problem 7:** \( x > -2 \)
4. **Problem 8:** All real numbers
5. **Problem 9:** \( -3 \leq w < 2 \)
Solution
Sure, let's solve each of the given inequalities step by step.
---
### **5. \( 2n + 5 > 1 \) and \( 3n + 4 > 7 \)**
**First Inequality:**
\[
2n + 5 > 1 \\
2n > 1 - 5 \\
2n > -4 \\
n > -2
\]
**Second Inequality:**
\[
3n + 4 > 7 \\
3n > 7 - 4 \\
3n > 3 \\
n > 1
\]
**Combined Solution (AND condition):**
\[
n > 1
\]
*Both conditions must be satisfied, so the solution is \( n > 1 \).*
---
### **6. \( -4u + 9 > 1 \) and \( 7u - 13 \leq -6 \)**
**First Inequality:**
\[
-4u + 9 > 1 \\
-4u > 1 - 9 \\
-4u > -8 \\
u < 2 \quad \text{(divide by -4 and reverse the inequality)}
\]
**Second Inequality:**
\[
7u - 13 \leq -6 \\
7u \leq -6 + 13 \\
7u \leq 7 \\
u \leq 1
\]
**Combined Solution (AND condition):**
\[
u \leq 1
\]
*Both conditions must be satisfied, so the solution is \( u \leq 1 \).*
---
### **7. \( 32 \leq 3x + 20 \) or \( 17 > 1 - 8x \)**
**First Inequality:**
\[
32 \leq 3x + 20 \\
3x \geq 32 - 20 \\
3x \geq 12 \\
x \geq 4
\]
**Second Inequality:**
\[
17 > 1 - 8x \\
17 - 1 > -8x \\
16 > -8x \\
x > -2 \quad \text{(divide by -8 and reverse the inequality)}
\]
**Combined Solution (OR condition):**
\[
x \geq 4 \quad \text{or} \quad x > -2
\]
*Simplifying, this covers all real numbers greater than \(-2\). So, the solution is \( x > -2 \).*
---
### **8. \( -2k + 8 < 14 \) or \( 3k + 1 < 1 \)**
**First Inequality:**
\[
-2k + 8 < 14 \\
-2k < 14 - 8 \\
-2k < 6 \\
k > -3 \quad \text{(divide by -2 and reverse the inequality)}
\]
**Second Inequality:**
\[
3k + 1 < 1 \\
3k < 1 - 1 \\
3k < 0 \\
k < 0
\]
**Combined Solution (OR condition):**
\[
k > -3 \quad \text{or} \quad k < 0
\]
*Since \( k > -3 \) already includes \( k < 0 \) and \( k \geq 0 \), the combined solution covers all real numbers. Therefore, **all real numbers** are solutions.*
---
### **9. \( 5(w + 4) \geq 5 \) and \( 2(w + 4) < 12 \)**
**First Inequality:**
\[
5(w + 4) \geq 5 \\
w + 4 \geq 1 \\
w \geq -3
\]
**Second Inequality:**
\[
2(w + 4) < 12 \\
w + 4 < 6 \\
w < 2
\]
**Combined Solution (AND condition):**
\[
-3 \leq w < 2
\]
*Both conditions must be satisfied, so the solution is \( -3 \leq w < 2 \).*
---
### **Summary of Solutions:**
1. **Problem 5:** \( n > 1 \)
2. **Problem 6:** \( u \leq 1 \)
3. **Problem 7:** \( x > -2 \)
4. **Problem 8:** All real numbers (any real number satisfies at least one inequality)
5. **Problem 9:** \( -3 \leq w < 2 \)
---
If you have any further questions or need additional explanations, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution