Pregunta
upstudy study bank question image url

(5) \( 2 n+5>1 \) and \( 3 n+4>7 \) 6) \( -4 u+9>1 \) and \( 7 u-13 \leq-6 \) (7) \( 32 \leq 3 x+20 \) or \( 17>1-8 x \) 8) \( -2 k+8<14 \) or \( 3 k+1<1 \) 9) \( 5(w+4) \geqslant 5 \) and \( 2(w+4)<12 \)

Ask by Morrison Hodges. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions:** 1. **Problem 5:** \( n > 1 \) 2. **Problem 6:** \( u \leq 1 \) 3. **Problem 7:** \( x > -2 \) 4. **Problem 8:** All real numbers 5. **Problem 9:** \( -3 \leq w < 2 \)

Solución

Sure, let's solve each of the given inequalities step by step. --- ### **5. \( 2n + 5 > 1 \) and \( 3n + 4 > 7 \)** **First Inequality:** \[ 2n + 5 > 1 \\ 2n > 1 - 5 \\ 2n > -4 \\ n > -2 \] **Second Inequality:** \[ 3n + 4 > 7 \\ 3n > 7 - 4 \\ 3n > 3 \\ n > 1 \] **Combined Solution (AND condition):** \[ n > 1 \] *Both conditions must be satisfied, so the solution is \( n > 1 \).* --- ### **6. \( -4u + 9 > 1 \) and \( 7u - 13 \leq -6 \)** **First Inequality:** \[ -4u + 9 > 1 \\ -4u > 1 - 9 \\ -4u > -8 \\ u < 2 \quad \text{(divide by -4 and reverse the inequality)} \] **Second Inequality:** \[ 7u - 13 \leq -6 \\ 7u \leq -6 + 13 \\ 7u \leq 7 \\ u \leq 1 \] **Combined Solution (AND condition):** \[ u \leq 1 \] *Both conditions must be satisfied, so the solution is \( u \leq 1 \).* --- ### **7. \( 32 \leq 3x + 20 \) or \( 17 > 1 - 8x \)** **First Inequality:** \[ 32 \leq 3x + 20 \\ 3x \geq 32 - 20 \\ 3x \geq 12 \\ x \geq 4 \] **Second Inequality:** \[ 17 > 1 - 8x \\ 17 - 1 > -8x \\ 16 > -8x \\ x > -2 \quad \text{(divide by -8 and reverse the inequality)} \] **Combined Solution (OR condition):** \[ x \geq 4 \quad \text{or} \quad x > -2 \] *Simplifying, this covers all real numbers greater than \(-2\). So, the solution is \( x > -2 \).* --- ### **8. \( -2k + 8 < 14 \) or \( 3k + 1 < 1 \)** **First Inequality:** \[ -2k + 8 < 14 \\ -2k < 14 - 8 \\ -2k < 6 \\ k > -3 \quad \text{(divide by -2 and reverse the inequality)} \] **Second Inequality:** \[ 3k + 1 < 1 \\ 3k < 1 - 1 \\ 3k < 0 \\ k < 0 \] **Combined Solution (OR condition):** \[ k > -3 \quad \text{or} \quad k < 0 \] *Since \( k > -3 \) already includes \( k < 0 \) and \( k \geq 0 \), the combined solution covers all real numbers. Therefore, **all real numbers** are solutions.* --- ### **9. \( 5(w + 4) \geq 5 \) and \( 2(w + 4) < 12 \)** **First Inequality:** \[ 5(w + 4) \geq 5 \\ w + 4 \geq 1 \\ w \geq -3 \] **Second Inequality:** \[ 2(w + 4) < 12 \\ w + 4 < 6 \\ w < 2 \] **Combined Solution (AND condition):** \[ -3 \leq w < 2 \] *Both conditions must be satisfied, so the solution is \( -3 \leq w < 2 \).* --- ### **Summary of Solutions:** 1. **Problem 5:** \( n > 1 \) 2. **Problem 6:** \( u \leq 1 \) 3. **Problem 7:** \( x > -2 \) 4. **Problem 8:** All real numbers (any real number satisfies at least one inequality) 5. **Problem 9:** \( -3 \leq w < 2 \) --- If you have any further questions or need additional explanations, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve these inequalities and systems, let's break them down step-by-step! You want to isolate the variable by performing operations to both sides. Remember, if you multiply or divide by a negative number, you must flip the inequality sign! So let's take those inequalities one by one and have some fun with math! Now, if you find yourself stuck, don’t fret! Drawing a number line can help visualize where the solutions lie, especially when dealing with compound inequalities. And remember, when combining inequalities with 'and,' the solution set is the intersection, while for 'or,' it covers the union of possible solutions, so keep an eye on those symbols!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad