Question
upstudy study bank question image url

1. (3 pts) For each of the matrices below, find its inverse. \[ A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \quad B=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \quad C=\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1\end{array}\right] \] Comment: This problem should be done by hand (but you can use Matlab to

Ask by Welch Lynch. in the United States
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The inverses of the matrices are: 1. \( A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \) 2. \( B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix} \) 3. \( C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix} \)

Solution

Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rr}{1}&{2}\\{3}&{4}\end{array}\right]\) - step1: Evaluate the determinant: \(-2\) - step2: Using the formula: \(\frac{1}{1\times 4-2\times 3}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\) - step3: Evaluate: \(-\frac{1}{2}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\) - step4: Multiply the terms: \(\left[\begin{array}{rr}{-\frac{1}{2}\times 4}&{-\frac{1}{2}\left(-2\right)}\\{-\frac{1}{2}\left(-3\right)}&{-\frac{1}{2}\times 1}\end{array}\right]\) - step5: Evaluate: \(\left[\begin{array}{rr}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}\right]\) Find the inverse matrix of \( \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \). Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rrr}{1}&{1}&{1}\\{0}&{1}&{1}\\{1}&{0}&{1}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{1}&{0}&{1}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{-1}&{0}&{-1}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{0}&{2}&{-1}&{-1}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{0}&{0}&{1}&{-1}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step7: Write the right half matrix: \(\left[\begin{array}{rrr}{1}&{-1}&{0}\\{1}&{0}&{-1}\\{-1}&{1}&{1}\end{array}\right]\) Find the inverse matrix of \( \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \end{bmatrix} \). Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rrrr}{1}&{2}&{1}&{0}\\{2}&{1}&{0}&{1}\\{2}&{0}&{1}&{3}\\{0}&{1}&{3}&{1}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{2}&{1}&{0}&{1}&{0}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\) - step7: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\) - step8: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{-1}&{-\frac{8}{5}}&{\frac{11}{5}}&{-\frac{7}{5}}&{1}\end{array}\right]\) - step9: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step10: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step11: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{0}&{\frac{6}{5}}&{-\frac{16}{15}}&{\frac{7}{15}}&{-\frac{1}{3}}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step12: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step13: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{0}&{0}&{\frac{11}{5}}&{-\frac{7}{5}}&{\frac{4}{5}}&{-1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step14: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{0}&{0}&{0}&{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step15: Write the right half matrix: \(\left[\begin{array}{rrrr}{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{2}&{-2}&{1}&{-1}\\{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) Here are the inverses of the given matrices: 1. For matrix \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \): \[ A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \] 2. For matrix \( B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \): \[ B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix} \] 3. For matrix \( C = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \end{bmatrix} \): \[ C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix} \] These results provide the inverses of the matrices \( A \), \( B \), and \( C \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the inverses of the matrices A, B, and C, we can utilize different methods tailored for 2x2, 3x3, and 4x4 matrices. For matrix A: \[ A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \] The inverse is calculated as: \[ A^{-1} = \frac{1}{ad-bc} \left[\begin{array}{ll}d & -b \\ -c & a\end{array}\right] \] where \( a=1, b=2, c=3, d=4 \). The determinant \( ad-bc = 1(4) - 2(3) = 4-6 = -2 \). Therefore, \[ A^{-1} = \frac{1}{-2} \left[\begin{array}{ll}4 & -2 \\ -3 & 1\end{array}\right] = \left[\begin{array}{ll}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right] \] For matrix B: \[ B=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right] \] You can apply the formula or row-reduction technique to find the inverse. After performing row operations (or using the adjoint method), you'll find that: \[ B^{-1} = \left[\begin{array}{lll} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 1 \end{array}\right] \] For matrix C: \[ C=\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1\end{array}\right] \] A more complex calculation involving matrix techniques like Gaussian elimination, or the adjugate method will lead you to the result: \[ C^{-1} = \left[\begin{array}{llll} 1 & 2 & -1 & -1 \\ -2 & -1 & 2 & 1 \\ 1 & 3 & -2 & -1 \\ -1 & -1 & 1 & 1 \end{array}\right] \] So, you can solve these matrices step by step to find their inverses! Happy calculating!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy