Answer
The inverses of the matrices are:
1. \( A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \)
2. \( B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix} \)
3. \( C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix} \)
Solution
Matrices by following steps:
- step0: Find the matrix inverse:
\(\left[\begin{array}{rr}{1}&{2}\\{3}&{4}\end{array}\right]\)
- step1: Evaluate the determinant:
\(-2\)
- step2: Using the formula:
\(\frac{1}{1\times 4-2\times 3}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\)
- step3: Evaluate:
\(-\frac{1}{2}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\)
- step4: Multiply the terms:
\(\left[\begin{array}{rr}{-\frac{1}{2}\times 4}&{-\frac{1}{2}\left(-2\right)}\\{-\frac{1}{2}\left(-3\right)}&{-\frac{1}{2}\times 1}\end{array}\right]\)
- step5: Evaluate:
\(\left[\begin{array}{rr}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}\right]\)
Find the inverse matrix of \( \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \).
Matrices by following steps:
- step0: Find the matrix inverse:
\(\left[\begin{array}{rrr}{1}&{1}&{1}\\{0}&{1}&{1}\\{1}&{0}&{1}\end{array}\right]\)
- step1: Begin by adjoining the identity matrix to form the matrix:
\(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{1}&{0}&{1}&{0}&{0}&{1}\end{array}\right]\)
- step2: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{-1}&{0}&{-1}&{0}&{1}\end{array}\right]\)
- step3: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\)
- step4: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\)
- step5: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{1}&{0}&{2}&{-1}&{-1}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\)
- step6: Simplify the row:
\(\left[\begin{array}{rrr|rrr}{1}&{0}&{0}&{1}&{-1}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\)
- step7: Write the right half matrix:
\(\left[\begin{array}{rrr}{1}&{-1}&{0}\\{1}&{0}&{-1}\\{-1}&{1}&{1}\end{array}\right]\)
Find the inverse matrix of \( \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \end{bmatrix} \).
Matrices by following steps:
- step0: Find the matrix inverse:
\(\left[\begin{array}{rrrr}{1}&{2}&{1}&{0}\\{2}&{1}&{0}&{1}\\{2}&{0}&{1}&{3}\\{0}&{1}&{3}&{1}\end{array}\right]\)
- step1: Begin by adjoining the identity matrix to form the matrix:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{2}&{1}&{0}&{1}&{0}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\)
- step2: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\)
- step3: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\)
- step4: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\)
- step5: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\)
- step6: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\)
- step7: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\)
- step8: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{-1}&{-\frac{8}{5}}&{\frac{11}{5}}&{-\frac{7}{5}}&{1}\end{array}\right]\)
- step9: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\)
- step10: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\)
- step11: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{0}&{\frac{6}{5}}&{-\frac{16}{15}}&{\frac{7}{15}}&{-\frac{1}{3}}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\)
- step12: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\)
- step13: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{0}&{0}&{\frac{11}{5}}&{-\frac{7}{5}}&{\frac{4}{5}}&{-1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\)
- step14: Simplify the row:
\(\left[\begin{array}{rrrr|rrrr}{1}&{0}&{0}&{0}&{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\)
- step15: Write the right half matrix:
\(\left[\begin{array}{rrrr}{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{2}&{-2}&{1}&{-1}\\{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\)
Here are the inverses of the given matrices:
1. For matrix \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \):
\[
A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}
\]
2. For matrix \( B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \):
\[
B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix}
\]
3. For matrix \( C = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \end{bmatrix} \):
\[
C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix}
\]
These results provide the inverses of the matrices \( A \), \( B \), and \( C \).
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution