Pregunta
upstudy study bank question image url

1. (3 pts) For each of the matrices below, find its inverse. \[ A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \quad B=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \quad C=\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1\end{array}\right] \] Comment: This problem should be done by hand (but you can use Matlab to

Ask by Welch Lynch. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The inverses of the matrices are: 1. \( A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \) 2. \( B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix} \) 3. \( C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix} \)

Solución

Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rr}{1}&{2}\\{3}&{4}\end{array}\right]\) - step1: Evaluate the determinant: \(-2\) - step2: Using the formula: \(\frac{1}{1\times 4-2\times 3}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\) - step3: Evaluate: \(-\frac{1}{2}\times \left[\begin{array}{rr}{4}&{-2}\\{-3}&{1}\end{array}\right]\) - step4: Multiply the terms: \(\left[\begin{array}{rr}{-\frac{1}{2}\times 4}&{-\frac{1}{2}\left(-2\right)}\\{-\frac{1}{2}\left(-3\right)}&{-\frac{1}{2}\times 1}\end{array}\right]\) - step5: Evaluate: \(\left[\begin{array}{rr}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}\right]\) Find the inverse matrix of \( \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \). Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rrr}{1}&{1}&{1}\\{0}&{1}&{1}\\{1}&{0}&{1}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{1}&{0}&{1}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{-1}&{0}&{-1}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{1}&{0}&{1}&{0}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{1}&{1}&{0}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{1}&{0}&{2}&{-1}&{-1}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{rrr|rrr}{1}&{0}&{0}&{1}&{-1}&{0}\\{0}&{1}&{0}&{1}&{0}&{-1}\\{0}&{0}&{1}&{-1}&{1}&{1}\end{array}\right]\) - step7: Write the right half matrix: \(\left[\begin{array}{rrr}{1}&{-1}&{0}\\{1}&{0}&{-1}\\{-1}&{1}&{1}\end{array}\right]\) Find the inverse matrix of \( \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \end{bmatrix} \). Matrices by following steps: - step0: Find the matrix inverse: \(\left[\begin{array}{rrrr}{1}&{2}&{1}&{0}\\{2}&{1}&{0}&{1}\\{2}&{0}&{1}&{3}\\{0}&{1}&{3}&{1}\end{array}\right]\) - step1: Begin by adjoining the identity matrix to form the matrix: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{2}&{1}&{0}&{1}&{0}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step2: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{2}&{0}&{1}&{3}&{0}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step3: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{-3}&{-2}&{1}&{-2}&{1}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step4: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{-4}&{-1}&{3}&{-2}&{0}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step5: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{1}&{3}&{1}&{0}&{0}&{0}&{1}\end{array}\right]\) - step6: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{\frac{5}{3}}&{\frac{5}{3}}&{\frac{2}{3}}&{-\frac{4}{3}}&{1}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\) - step7: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{\frac{7}{3}}&{\frac{4}{3}}&{-\frac{2}{3}}&{\frac{1}{3}}&{0}&{1}\end{array}\right]\) - step8: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{-1}&{-\frac{8}{5}}&{\frac{11}{5}}&{-\frac{7}{5}}&{1}\end{array}\right]\) - step9: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{1}&{\frac{2}{5}}&{-\frac{4}{5}}&{\frac{3}{5}}&{0}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step10: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{-\frac{1}{3}}&{\frac{2}{3}}&{-\frac{1}{3}}&{0}&{0}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step11: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{\frac{2}{3}}&{0}&{\frac{6}{5}}&{-\frac{16}{15}}&{\frac{7}{15}}&{-\frac{1}{3}}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step12: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{1}&{0}&{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step13: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{2}&{0}&{0}&{\frac{11}{5}}&{-\frac{7}{5}}&{\frac{4}{5}}&{-1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step14: Simplify the row: \(\left[\begin{array}{rrrr|rrrr}{1}&{0}&{0}&{0}&{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{0}&{1}&{0}&{0}&{2}&{-2}&{1}&{-1}\\{0}&{0}&{1}&{0}&{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{0}&{0}&{0}&{1}&{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) - step15: Write the right half matrix: \(\left[\begin{array}{rrrr}{-\frac{9}{5}}&{\frac{13}{5}}&{-\frac{6}{5}}&{1}\\{2}&{-2}&{1}&{-1}\\{-\frac{6}{5}}&{\frac{7}{5}}&{-\frac{4}{5}}&{1}\\{\frac{8}{5}}&{-\frac{11}{5}}&{\frac{7}{5}}&{-1}\end{array}\right]\) Here are the inverses of the given matrices: 1. For matrix \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \): \[ A^{-1} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \] 2. For matrix \( B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \): \[ B^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{bmatrix} \] 3. For matrix \( C = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \end{bmatrix} \): \[ C^{-1} = \begin{bmatrix} -\frac{9}{5} & \frac{13}{5} & -\frac{6}{5} & 1 \\ 2 & -2 & 1 & -1 \\ -\frac{6}{5} & \frac{7}{5} & -\frac{4}{5} & 1 \\ \frac{8}{5} & -\frac{11}{5} & \frac{7}{5} & -1 \end{bmatrix} \] These results provide the inverses of the matrices \( A \), \( B \), and \( C \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the inverses of the matrices A, B, and C, we can utilize different methods tailored for 2x2, 3x3, and 4x4 matrices. For matrix A: \[ A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \] The inverse is calculated as: \[ A^{-1} = \frac{1}{ad-bc} \left[\begin{array}{ll}d & -b \\ -c & a\end{array}\right] \] where \( a=1, b=2, c=3, d=4 \). The determinant \( ad-bc = 1(4) - 2(3) = 4-6 = -2 \). Therefore, \[ A^{-1} = \frac{1}{-2} \left[\begin{array}{ll}4 & -2 \\ -3 & 1\end{array}\right] = \left[\begin{array}{ll}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right] \] For matrix B: \[ B=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right] \] You can apply the formula or row-reduction technique to find the inverse. After performing row operations (or using the adjoint method), you'll find that: \[ B^{-1} = \left[\begin{array}{lll} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 1 \end{array}\right] \] For matrix C: \[ C=\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1\end{array}\right] \] A more complex calculation involving matrix techniques like Gaussian elimination, or the adjugate method will lead you to the result: \[ C^{-1} = \left[\begin{array}{llll} 1 & 2 & -1 & -1 \\ -2 & -1 & 2 & 1 \\ 1 & 3 & -2 & -1 \\ -1 & -1 & 1 & 1 \end{array}\right] \] So, you can solve these matrices step by step to find their inverses! Happy calculating!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad