Question
upstudy study bank question image url

b) \( \left(\frac{1}{4} q^{6}\right)^{2}\left(\frac{2}{5} q^{3}\right)^{3} \)

Ask by Ellis Spencer. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{q^{21}}{250} \).

Solution

To simplify the expression: \[ \left(\frac{1}{4} q^{6}\right)^{2} \left(\frac{2}{5} q^{3}\right)^{3} \] Let's break it down step by step. 1. **Apply the Power to Each Factor:** \[ \left(\frac{1}{4}\right)^{2} \cdot (q^{6})^{2} \cdot \left(\frac{2}{5}\right)^{3} \cdot (q^{3})^{3} \] 2. **Calculate Each Part Separately:** - \(\left(\frac{1}{4}\right)^{2} = \frac{1}{16}\) - \((q^{6})^{2} = q^{12}\) - \(\left(\frac{2}{5}\right)^{3} = \frac{8}{125}\) - \((q^{3})^{3} = q^{9}\) 3. **Combine the Results:** \[ \frac{1}{16} \cdot q^{12} \cdot \frac{8}{125} \cdot q^{9} = \frac{1 \cdot 8}{16 \cdot 125} \cdot q^{12+9} \] 4. **Simplify the Numerical Coefficient:** \[ \frac{8}{2000} = \frac{1}{250} \] 5. **Combine the Exponents:** \[ q^{12+9} = q^{21} \] 6. **Final Simplified Expression:** \[ \frac{q^{21}}{250} \] **Answer:** After simplifying, the expression is equal to \( \dfrac{q^{21}}{250} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To simplify the expression \( \left(\frac{1}{4} q^{6}\right)^{2}\left(\frac{2}{5} q^{3}\right)^{3} \), we first apply the power to each component in the parentheses. Starting with the first part: \[ \left(\frac{1}{4} q^{6}\right)^{2} = \left(\frac{1}{4}\right)^{2} \cdot (q^{6})^{2} = \frac{1}{16} q^{12} \] Now for the second part: \[ \left(\frac{2}{5} q^{3}\right)^{3} = \left(\frac{2}{5}\right)^{3} \cdot (q^{3})^{3} = \frac{8}{125} q^{9} \] Next, we combine these two results: \[ \frac{1}{16} q^{12} \cdot \frac{8}{125} q^{9} = \left(\frac{1 \cdot 8}{16 \cdot 125}\right) \cdot (q^{12} \cdot q^{9}) \] Calculating the coefficients: \[ \frac{8}{16 \cdot 125} = \frac{8}{2000} = \frac{1}{250} \] And combining the powers of \( q \): \[ q^{12 + 9} = q^{21} \] Putting it all together, we get: \[ \frac{1}{250} q^{21} \] So, the simplified expression is: \[ \frac{1}{250} q^{21} \]

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy