b) \( \left(\frac{1}{4} q^{6}\right)^{2}\left(\frac{2}{5} q^{3}\right)^{3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify the expression \( \left(\frac{1}{4} q^{6}\right)^{2}\left(\frac{2}{5} q^{3}\right)^{3} \), we first apply the power to each component in the parentheses. Starting with the first part: \[ \left(\frac{1}{4} q^{6}\right)^{2} = \left(\frac{1}{4}\right)^{2} \cdot (q^{6})^{2} = \frac{1}{16} q^{12} \] Now for the second part: \[ \left(\frac{2}{5} q^{3}\right)^{3} = \left(\frac{2}{5}\right)^{3} \cdot (q^{3})^{3} = \frac{8}{125} q^{9} \] Next, we combine these two results: \[ \frac{1}{16} q^{12} \cdot \frac{8}{125} q^{9} = \left(\frac{1 \cdot 8}{16 \cdot 125}\right) \cdot (q^{12} \cdot q^{9}) \] Calculating the coefficients: \[ \frac{8}{16 \cdot 125} = \frac{8}{2000} = \frac{1}{250} \] And combining the powers of \( q \): \[ q^{12 + 9} = q^{21} \] Putting it all together, we get: \[ \frac{1}{250} q^{21} \] So, the simplified expression is: \[ \frac{1}{250} q^{21} \]