Question
upstudy study bank question image url

\( \tan \alpha - \frac { 1 } { \sqrt { 3 } } \leq \frac { 1 } { \sqrt { 3 } \tan \alpha } - 1 \)

Ask by Stephens Wagner. in Russia
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \tan \alpha \leq \frac{1}{\sqrt{3} \tan \alpha} - 1 \] Bu tengsizlikning yechimi \(\tan \alpha = \frac{-1 + \sqrt{1 + 4\sqrt{3}}}{2\sqrt{3}}\) va \(\tan \alpha = \frac{-1 - \sqrt{1 + 4\sqrt{3}}}{2\sqrt{3}}\) orasida bo'lib, \(\tan \alpha\) ning bu ildizlarni o'rtasida yoki ularning birida bo'lishi kerak.

Solution

Berilgan tengsizlikni yechish uchun avval uni oddiyroq ko'rinishga keltiramiz: \[ \tan \alpha - \frac{1}{\sqrt{3}} \leq \frac{1}{\sqrt{3} \tan \alpha} - 1 \] Buni yechish uchun har ikki tomonni \(\sqrt{3} \tan \alpha\) ga ko'paytiramiz (bu ifoda musbat bo'lsa, tengsizlik yo'nalishi o'zgarmaydi): \[ \sqrt{3} \tan^2 \alpha - \tan \alpha \leq 1 - \sqrt{3} \tan \alpha \] Endi barcha a'zolarni bir tomonga to'playmiz: \[ \sqrt{3} \tan^2 \alpha + \tan \alpha - 1 \leq 0 \] Bu kvadrat tengsizlikni yechish uchun avval diskriminantni hisoblaymiz: \[ D = b^2 - 4ac = 1^2 - 4 \cdot \sqrt{3} \cdot (-1) = 1 + 4\sqrt{3} \] Endi kvadrat tenglamaning ildizlarini topamiz: \[ \tan \alpha = \frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{1 + 4\sqrt{3}}}{2\sqrt{3}} \] Ildizlarni hisoblaymiz: \[ \tan \alpha_1 = \frac{-1 + \sqrt{1 + 4\sqrt{3}}}{2\sqrt{3}}, \quad \tan \alpha_2 = \frac{-1 - \sqrt{1 + 4\sqrt{3}}}{2\sqrt{3}} \] Endi bu ildizlar yordamida tengsizlikning yechimini aniqlaymiz. Tengsizlikning yechimi \(\tan \alpha\) ning bu ildizlar orasida yoki ularning birida bo'lishi kerak. Shu bilan birga, \(\tan \alpha\) ning qiymatlari uchun intervalni aniqlaymiz. Tengsizlikni yechish jarayonida har bir qadamni batafsil ko'rsatdim. Agar sizga aniq qiymatlar kerak bo'lsa, hisoblashlarni davom ettirishim mumkin.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To explore the inequality \( \tan \alpha - \frac { 1 } { \sqrt { 3 } } \leq \frac { 1 } { \sqrt { 3 } \tan \alpha } - 1 \), let's bring all terms to one side and simplify. Start by finding a common denominator to combine the terms effectively, leading to a single inequality. Additionally, remember that \( \tan \alpha \) can take on all real values except where it is undefined, adding layers to how we interpret the inequality's solutions. Once simplified, you can analyze the critical points where the inequality changes, helping to visualize or graph the solutions. If you try substituting specific values for \( \alpha \), such as \( 30^\circ \) or \( 60^\circ \), you can gain insight into how the inequality holds or fails—it's like a mini-experiment in trigonometry! Just be cautious about the values of \( \tan \alpha \) that could lead to undefined behavior.

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy