Answer
1. **42 g of Aluminum:** Approximately 1.56 moles.
2. **7.5 × 10²¹ atoms of Iron:** 0.0125 moles.
3. **1.5 moles of Carbon:** 9 × 10²³ atoms.
4. **0.65 moles of Copper:** 41.28 g.
5. **1.25 × 10²⁴ atoms of Nitrogen:** 29.12 g.
6. **18 g of Silver:** Approximately 1.00 × 10²³ atoms.
7. **6.25 × 10²⁰ atoms of Lead:** 0.216 g.
8. **0.0135 moles of Neon:** 8.1 × 10²¹ atoms.
9. **0.0085 moles of Gold:** 1.67 g.
10. **2 g of Silicon:** Approximately 0.071 moles.
11. **Molar mass of Chlorine:** 19 g / 0.0282 moles ≈ 673 g/mol.
Solution
Let's solve each of the problems step by step, extracting the known conditions and applying the necessary calculations.
### 1) How many mole-atoms are there in 42 g of Aluminum?
**Known Conditions:**
- Molar mass of Aluminum (\( \text{Al} \)) = 27 g/mol
- Mass = 42 g
**Calculation:**
To find the number of moles, we use the formula:
\[
n = \frac{m}{M}
\]
where \( n \) is the number of moles, \( m \) is the mass, and \( M \) is the molar mass.
\[
n = \frac{42 \, \text{g}}{27 \, \text{g/mol}} \approx 1.56 \, \text{moles}
\]
### 2) How many atoms are there in \( 7.5 \times 10^{21} \) atoms of iron?
**Known Conditions:**
- Number of atoms = \( 7.5 \times 10^{21} \)
- Avogadro's number (\( N_A \)) = \( 6 \times 10^{23} \) atoms/mol
**Calculation:**
To find the number of moles, we use:
\[
n = \frac{\text{Number of atoms}}{N_A}
\]
\[
n = \frac{7.5 \times 10^{21}}{6 \times 10^{23}} \approx 0.0125 \, \text{moles}
\]
### 3) How many atoms are there in 1.5 moles of carbon?
**Known Conditions:**
- Number of moles = 1.5 moles
- Avogadro's number (\( N_A \)) = \( 6 \times 10^{23} \) atoms/mol
**Calculation:**
\[
\text{Number of atoms} = n \times N_A
\]
\[
\text{Number of atoms} = 1.5 \times 6 \times 10^{23} = 9 \times 10^{23} \, \text{atoms}
\]
### 4) What is the mass of 0.65 moles of copper atoms?
**Known Conditions:**
- Molar mass of Copper (\( \text{Cu} \)) = 63.5 g/mol
- Number of moles = 0.65 moles
**Calculation:**
\[
m = n \times M
\]
\[
m = 0.65 \times 63.5 \approx 41.28 \, \text{g}
\]
### 5) What is the mass of \( 1.25 \times 10^{24} \) atoms of nitrogen?
**Known Conditions:**
- Number of atoms = \( 1.25 \times 10^{24} \)
- Molar mass of Nitrogen (\( \text{N} \)) = 14 g/mol
**Calculation:**
First, find the number of moles:
\[
n = \frac{1.25 \times 10^{24}}{6 \times 10^{23}} \approx 2.08 \, \text{moles}
\]
Then, calculate the mass:
\[
m = n \times M
\]
\[
m = 2.08 \times 14 \approx 29.12 \, \text{g}
\]
### 6) How many atoms are there in 18 g of silver?
**Known Conditions:**
- Molar mass of Silver (\( \text{Ag} \)) = 107.87 g/mol
- Mass = 18 g
**Calculation:**
First, find the number of moles:
\[
n = \frac{18}{107.87} \approx 0.166 \, \text{moles}
\]
Then, calculate the number of atoms:
\[
\text{Number of atoms} = n \times N_A
\]
\[
\text{Number of atoms} = 0.166 \times 6 \times 10^{23} \approx 1.00 \times 10^{23} \, \text{atoms}
\]
### 7) Determine the mass of \( 6.25 \times 10^{20} \) atoms of lead.
**Known Conditions:**
- Number of atoms = \( 6.25 \times 10^{20} \)
- Molar mass of Lead (\( \text{Pb} \)) = 207.2 g/mol
**Calculation:**
First, find the number of moles:
\[
n = \frac{6.25 \times 10^{20}}{6 \times 10^{23}} \approx 1.04 \times 10^{-3} \, \text{moles}
\]
Then, calculate the mass:
\[
m = n \times M
\]
\[
m = 1.04 \times 10^{-3} \times 207.2 \approx 0.216 \, \text{g}
\]
### 8) How many atoms are there in 0.0135 moles of Neon?
**Known Conditions:**
- Number of moles = 0.0135 moles
- Avogadro's number (\( N_A \)) = \( 6 \times 10^{23} \) atoms/mol
**Calculation:**
\[
\text{Number of atoms} = n \times N_A
\]
\[
\text{Number of atoms} = 0.0135 \times 6 \times 10^{23} \approx 8.1 \times 10^{21} \, \text{atoms}
\]
### 9) What is the mass of 0.0085 moles of gold?
**Known Conditions:**
- Molar mass of Gold (\( \text{Au} \)) = 197 g/mol
- Number of moles = 0.0085 moles
**Calculation:**
\[
m = n \times M
\]
\[
m = 0.0085 \times 197 \approx 1.67 \, \text{g}
\]
### 10) Find the number of moles of 2 g of silicon.
**Known Conditions:**
- Molar mass of Silicon (\( \text{Si} \)) = 28.09 g/mol
- Mass = 2 g
**Calculation:**
\[
n = \frac{m}{M}
\]
\[
n = \frac{2}{28.09} \approx 0.071 \, \text{moles}
\]
### 11) Knowing that the mass of 0.0282 moles of chlorine is 19 g, find its molar mass.
**Known Conditions:**
- Number of moles = 0.0282 moles
- Mass = 19 g
**Calculation:**
\[
M = \frac{m}{n}
\
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution