Question
If \( \sin \theta=\frac{\sqrt{7}}{4} \) and \( \cos \theta=\frac{3}{4} \), what is \( \tan \theta \) ? \( \begin{array}{llll}\text { 1) } \frac{4}{3} & \text { 2) } \frac{\sqrt{7}}{4} & \text { 3) } \frac{\sqrt{7}}{3} & \text { 4) }-\frac{\sqrt{7}}{3}\end{array} \)
Ask by Savage Powell. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( \tan \theta = \frac{\sqrt{7}}{3} \)
Solution
To find \( \tan \theta \) given \( \sin \theta = \frac{\sqrt{7}}{4} \) and \( \cos \theta = \frac{3}{4} \), you can use the definition of tangent in terms of sine and cosine:
\[
\tan \theta = \frac{\sin \theta}{\cos \theta}
\]
Substitute the given values:
\[
\tan \theta = \frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}} = \frac{\sqrt{7}}{3}
\]
So, the correct answer is:
**3) \( \frac{\sqrt{7}}{3} \)**
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To find \( \tan \theta \), we use the relationship that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Given \( \sin \theta = \frac{\sqrt{7}}{4} \) and \( \cos \theta = \frac{3}{4} \), we can substitute these values into the formula: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}} = \frac{\sqrt{7}}{4} \cdot \frac{4}{3} = \frac{\sqrt{7}}{3} \] Thus, the answer is \( \frac{\sqrt{7}}{3} \), which corresponds to option 3).