Question
upstudy study bank question image url

\( \begin{array}{ll}\text { 1. Consider : } A=\sqrt{\frac{9}{11-x}} \text { if } \\ & x \in(-14 ;-11 ;-5 ; 0 ; 5 ; 11 ; 14) ; \text { which value(s) of } \mathrm{x} \text { will make } \mathrm{A}: \\ \text { 1.1. } & \text { Rational } \\ \text { 1.2. } & \text { Irrational } \\ \text { 1.3. } & \text { Undefined } \\ \text { 1.4. } & \text { Non-Real }\end{array} \)

Ask by Newton Schneider. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

For each value of \( x \) in \(\{-14, -11, -5, 0, 5, 11, 14\}\), the expression \( A = \sqrt{\frac{9}{11 - x}} \) results in: - **Rational**: \( x = -14, -5 \) - **Irrational**: \( x = -11, 0, 5 \) - **Undefined**: \( x = 11 \) - **Non-Real**: \( x = 14 \)

Solution

Let's analyze the function \( A = \sqrt{\frac{9}{11 - x}} \) for each value of \( x \) in the set \(\{-14, -11, -5, 0, 5, 11, 14\}\). ### Step 1: Evaluate the Expression for Each \( x \) 1. **For \( x = -14 \):** \[ A = \sqrt{\frac{9}{11 - (-14)}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \quad \text{(Rational)} \] 2. **For \( x = -11 \):** \[ A = \sqrt{\frac{9}{11 - (-11)}} = \sqrt{\frac{9}{22}} = \frac{3}{\sqrt{22}} \quad \text{(Irrational)} \] 3. **For \( x = -5 \):** \[ A = \sqrt{\frac{9}{11 - (-5)}} = \sqrt{\frac{9}{16}} = \frac{3}{4} \quad \text{(Rational)} \] 4. **For \( x = 0 \):** \[ A = \sqrt{\frac{9}{11 - 0}} = \sqrt{\frac{9}{11}} = \frac{3}{\sqrt{11}} \quad \text{(Irrational)} \] 5. **For \( x = 5 \):** \[ A = \sqrt{\frac{9}{11 - 5}} = \sqrt{\frac{9}{6}} = \sqrt{\frac{3}{2}} = \frac{\sqrt{6}}{2} \quad \text{(Irrational)} \] 6. **For \( x = 11 \):** \[ A = \sqrt{\frac{9}{11 - 11}} = \sqrt{\frac{9}{0}} \quad \text{(Undefined)} \] 7. **For \( x = 14 \):** \[ A = \sqrt{\frac{9}{11 - 14}} = \sqrt{\frac{9}{-3}} = \sqrt{-3} \quad \text{(Non-Real)} \] ### Step 2: Summary of Results 1. **1.1. Values of \( x \) that make \( A \) **Rational**:** - \( x = -14 \) - \( x = -5 \) 2. **1.2. Values of \( x \) that make \( A \) **Irrational**:** - \( x = -11 \) - \( x = 0 \) - \( x = 5 \) 3. **1.3. Values of \( x \) that make \( A \) **Undefined**:** - \( x = 11 \) 4. **1.4. Values of \( x \) that make \( A \) **Non-Real**:** - \( x = 14 \) ### Final Classification | \( x \) | \( A = \sqrt{\frac{9}{11 - x}} \) | Classification | |----------|------------------------------------|------------------| | \(-14\) | \( \frac{3}{5} \) | Rational | | \(-11\) | \( \frac{3}{\sqrt{22}} \) | Irrational | | \(-5\) | \( \frac{3}{4} \) | Rational | | \(0\) | \( \frac{3}{\sqrt{11}} \) | Irrational | | \(5\) | \( \frac{\sqrt{6}}{2} \) | Irrational | | \(11\) | Undefined | Undefined | | \(14\) | \( \sqrt{-3} \) | Non-Real |

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To determine the values of \( x \) that make \( A = \sqrt{\frac{9}{11 - x}} \) rational, irrational, undefined, or non-real, we should analyze the expression step-by-step. 1. **Rational Values**: For \( A \) to be rational, the expression inside the square root, \( \frac{9}{11 - x} \), must be a perfect square. The denominator \( 11 - x \) must also be positive. So, check values that maintain this: - For \( x = -14 \): \( A = \sqrt{\frac{9}{25}} = \frac{3}{5} \) (rational) - For \( x = -11 \): \( A = \sqrt{9} = 3 \) (rational) - For \( x = -5 \): \( A = \sqrt{\frac{9}{16}} = \frac{3}{4} \) (rational) - For \( x = 0 \): \( A = \sqrt{\frac{9}{11}} \) (irrational) - For \( x = 5 \): \( A = \sqrt{\frac{9}{6}} \) (irrational) - For \( x = 11 \): \( A = \sqrt{9} = 3 \) (rational) - For \( x = 14 \): \( A \) is undefined since the denominator becomes zero. 2. **Irrational Values**: The values of \( x \) that lead to \( A \) being irrational: - For \( x = 0 \): \( A = \sqrt{\frac{9}{11}} \) (irrational) - For \( x = 5 \): \( A = \sqrt{\frac{9}{6}} \) (irrational) 3. **Undefined Values**: The expression becomes undefined when the denominator is zero: - For \( x = 14 \): \( A = \sqrt{\frac{9}{11 - 14}} = \sqrt{\frac{9}{-3}} \), which results in division by zero. 4. **Non-Real Values**: The expression is non-real when \( 11 - x \) is negative, leading to a negative number inside the square root. This occurs when: - For \( x > 11 \): \( A \) results in a non-real value (theoretical, but not part of your sample values). So in summary: - **Rational**: \( x = -14, -11, -5, 11 \) - **Irrational**: \( x = 0, 5 \) - **Undefined**: \( x = 14 \) - **Non-Real**: \( x > 11 \) (not applicable to your chosen values).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy