Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { 1. Consider : } A=\sqrt{\frac{9}{11-x}} \text { if } \\ & x \in(-14 ;-11 ;-5 ; 0 ; 5 ; 11 ; 14) ; \text { which value(s) of } \mathrm{x} \text { will make } \mathrm{A}: \\ \text { 1.1. } & \text { Rational } \\ \text { 1.2. } & \text { Irrational } \\ \text { 1.3. } & \text { Undefined } \\ \text { 1.4. } & \text { Non-Real }\end{array} \)

Ask by Newton Schneider. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For each value of \( x \) in \(\{-14, -11, -5, 0, 5, 11, 14\}\), the expression \( A = \sqrt{\frac{9}{11 - x}} \) results in: - **Rational**: \( x = -14, -5 \) - **Irrational**: \( x = -11, 0, 5 \) - **Undefined**: \( x = 11 \) - **Non-Real**: \( x = 14 \)

Solución

Let's analyze the function \( A = \sqrt{\frac{9}{11 - x}} \) for each value of \( x \) in the set \(\{-14, -11, -5, 0, 5, 11, 14\}\). ### Step 1: Evaluate the Expression for Each \( x \) 1. **For \( x = -14 \):** \[ A = \sqrt{\frac{9}{11 - (-14)}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \quad \text{(Rational)} \] 2. **For \( x = -11 \):** \[ A = \sqrt{\frac{9}{11 - (-11)}} = \sqrt{\frac{9}{22}} = \frac{3}{\sqrt{22}} \quad \text{(Irrational)} \] 3. **For \( x = -5 \):** \[ A = \sqrt{\frac{9}{11 - (-5)}} = \sqrt{\frac{9}{16}} = \frac{3}{4} \quad \text{(Rational)} \] 4. **For \( x = 0 \):** \[ A = \sqrt{\frac{9}{11 - 0}} = \sqrt{\frac{9}{11}} = \frac{3}{\sqrt{11}} \quad \text{(Irrational)} \] 5. **For \( x = 5 \):** \[ A = \sqrt{\frac{9}{11 - 5}} = \sqrt{\frac{9}{6}} = \sqrt{\frac{3}{2}} = \frac{\sqrt{6}}{2} \quad \text{(Irrational)} \] 6. **For \( x = 11 \):** \[ A = \sqrt{\frac{9}{11 - 11}} = \sqrt{\frac{9}{0}} \quad \text{(Undefined)} \] 7. **For \( x = 14 \):** \[ A = \sqrt{\frac{9}{11 - 14}} = \sqrt{\frac{9}{-3}} = \sqrt{-3} \quad \text{(Non-Real)} \] ### Step 2: Summary of Results 1. **1.1. Values of \( x \) that make \( A \) **Rational**:** - \( x = -14 \) - \( x = -5 \) 2. **1.2. Values of \( x \) that make \( A \) **Irrational**:** - \( x = -11 \) - \( x = 0 \) - \( x = 5 \) 3. **1.3. Values of \( x \) that make \( A \) **Undefined**:** - \( x = 11 \) 4. **1.4. Values of \( x \) that make \( A \) **Non-Real**:** - \( x = 14 \) ### Final Classification | \( x \) | \( A = \sqrt{\frac{9}{11 - x}} \) | Classification | |----------|------------------------------------|------------------| | \(-14\) | \( \frac{3}{5} \) | Rational | | \(-11\) | \( \frac{3}{\sqrt{22}} \) | Irrational | | \(-5\) | \( \frac{3}{4} \) | Rational | | \(0\) | \( \frac{3}{\sqrt{11}} \) | Irrational | | \(5\) | \( \frac{\sqrt{6}}{2} \) | Irrational | | \(11\) | Undefined | Undefined | | \(14\) | \( \sqrt{-3} \) | Non-Real |

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the values of \( x \) that make \( A = \sqrt{\frac{9}{11 - x}} \) rational, irrational, undefined, or non-real, we should analyze the expression step-by-step. 1. **Rational Values**: For \( A \) to be rational, the expression inside the square root, \( \frac{9}{11 - x} \), must be a perfect square. The denominator \( 11 - x \) must also be positive. So, check values that maintain this: - For \( x = -14 \): \( A = \sqrt{\frac{9}{25}} = \frac{3}{5} \) (rational) - For \( x = -11 \): \( A = \sqrt{9} = 3 \) (rational) - For \( x = -5 \): \( A = \sqrt{\frac{9}{16}} = \frac{3}{4} \) (rational) - For \( x = 0 \): \( A = \sqrt{\frac{9}{11}} \) (irrational) - For \( x = 5 \): \( A = \sqrt{\frac{9}{6}} \) (irrational) - For \( x = 11 \): \( A = \sqrt{9} = 3 \) (rational) - For \( x = 14 \): \( A \) is undefined since the denominator becomes zero. 2. **Irrational Values**: The values of \( x \) that lead to \( A \) being irrational: - For \( x = 0 \): \( A = \sqrt{\frac{9}{11}} \) (irrational) - For \( x = 5 \): \( A = \sqrt{\frac{9}{6}} \) (irrational) 3. **Undefined Values**: The expression becomes undefined when the denominator is zero: - For \( x = 14 \): \( A = \sqrt{\frac{9}{11 - 14}} = \sqrt{\frac{9}{-3}} \), which results in division by zero. 4. **Non-Real Values**: The expression is non-real when \( 11 - x \) is negative, leading to a negative number inside the square root. This occurs when: - For \( x > 11 \): \( A \) results in a non-real value (theoretical, but not part of your sample values). So in summary: - **Rational**: \( x = -14, -11, -5, 11 \) - **Irrational**: \( x = 0, 5 \) - **Undefined**: \( x = 14 \) - **Non-Real**: \( x > 11 \) (not applicable to your chosen values).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad