\( \begin{array}{ll}\text { 1. Consider : } A=\sqrt{\frac{9}{11-x}} \text { if } \\ & x \in(-14 ;-11 ;-5 ; 0 ; 5 ; 11 ; 14) ; \text { which value(s) of } \mathrm{x} \text { will make } \mathrm{A}: \\ \text { 1.1. } & \text { Rational } \\ \text { 1.2. } & \text { Irrational } \\ \text { 1.3. } & \text { Undefined } \\ \text { 1.4. } & \text { Non-Real }\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To determine the values of \( x \) that make \( A = \sqrt{\frac{9}{11 - x}} \) rational, irrational, undefined, or non-real, we should analyze the expression step-by-step. 1. **Rational Values**: For \( A \) to be rational, the expression inside the square root, \( \frac{9}{11 - x} \), must be a perfect square. The denominator \( 11 - x \) must also be positive. So, check values that maintain this: - For \( x = -14 \): \( A = \sqrt{\frac{9}{25}} = \frac{3}{5} \) (rational) - For \( x = -11 \): \( A = \sqrt{9} = 3 \) (rational) - For \( x = -5 \): \( A = \sqrt{\frac{9}{16}} = \frac{3}{4} \) (rational) - For \( x = 0 \): \( A = \sqrt{\frac{9}{11}} \) (irrational) - For \( x = 5 \): \( A = \sqrt{\frac{9}{6}} \) (irrational) - For \( x = 11 \): \( A = \sqrt{9} = 3 \) (rational) - For \( x = 14 \): \( A \) is undefined since the denominator becomes zero. 2. **Irrational Values**: The values of \( x \) that lead to \( A \) being irrational: - For \( x = 0 \): \( A = \sqrt{\frac{9}{11}} \) (irrational) - For \( x = 5 \): \( A = \sqrt{\frac{9}{6}} \) (irrational) 3. **Undefined Values**: The expression becomes undefined when the denominator is zero: - For \( x = 14 \): \( A = \sqrt{\frac{9}{11 - 14}} = \sqrt{\frac{9}{-3}} \), which results in division by zero. 4. **Non-Real Values**: The expression is non-real when \( 11 - x \) is negative, leading to a negative number inside the square root. This occurs when: - For \( x > 11 \): \( A \) results in a non-real value (theoretical, but not part of your sample values). So in summary: - **Rational**: \( x = -14, -11, -5, 11 \) - **Irrational**: \( x = 0, 5 \) - **Undefined**: \( x = 14 \) - **Non-Real**: \( x > 11 \) (not applicable to your chosen values).