Calculate 6.1 6x 3- 1000 \( 6.3(16+21) \times 100 \) \( 6.553 \times 20 \div 1000 \) Which is smaller. \( \frac{3}{5} \) OR \( \frac{7}{35} \) Simphily, without the use of a calculithor: \( 8.1 \frac{5}{8}+\frac{2}{4} \) \( 33 \quad 2 \frac{1}{5}-\frac{3}{5} \) 8. \( \frac{2}{7} \times \frac{3}{5} \) \( 14+\frac{2}{5} \div \frac{1}{4} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To solve these calculations step by step: 1. For \( 6.1 \times 6 \times 3 - 1000 \): \( 6.1 \times 6 = 36.6 \) \( 36.6 \times 3 = 109.8 \) \( 109.8 - 1000 = -890.2 \) 2. For \( 6.3(16 + 21) \times 100 \): \( 16 + 21 = 37 \) \( 6.3 \times 37 = 233.1 \) \( 233.1 \times 100 = 23310 \) 3. For \( 6.553 \times 20 \div 1000 \): \( 6.553 \times 20 = 131.06 \) \( 131.06 \div 1000 = 0.13106 \) 4. Comparing \( \frac{3}{5} \) and \( \frac{7}{35} \): Simplifying \( \frac{7}{35} \) gives \( \frac{1}{5} \). Since \( \frac{3}{5} > \frac{1}{5} \), \( \frac{7}{35} \) is smaller. 5. For \( 8.1 \frac{5}{8} + \frac{2}{4} \): Convert \( 8.1 \) to a fraction: \( 8.1 = 8 + \frac{1}{10} = \frac{81}{10} \). \( 8.1 \frac{5}{8} = 8 + \frac{5}{8} \) which gives \( \frac{64}{8} + \frac{5}{8} = \frac{69}{8} \). \( \frac{2}{4} = \frac{1}{2} = \frac{4}{8} \). Hence, \( \frac{69}{8} + \frac{4}{8} = \frac{73}{8} = 9.125 \). 6. For \( 33 \quad 2 \frac{1}{5} - \frac{3}{5} \): Converting \( 33 \) to a fraction, \( 2 \frac{1}{5} = 2 + \frac{1}{5} = \frac{11}{5} \). So, \( 33 \frac{11}{5} - \frac{3}{5} = 33 + \frac{11}{5} - \frac{3}{5} = 33 + \frac{8}{5} \). This is \( 33 + 1.6 = 34.6 \). 7. For \( \frac{2}{7} \times \frac{3}{5} \): Multiply \( \frac{2 \times 3}{7 \times 5} = \frac{6}{35} \). 8. For \( 14 + \frac{2}{5} \div \frac{1}{4} \): \( \frac{2}{5} \div \frac{1}{4} = \frac{2}{5} \times 4 = \frac{8}{5} \). So, \( 14 + \frac{8}{5} = 14 + 1.6 = 15.6 \). Now you have your results for each expression! If you need further insights on how to use these in real life or tips to avoid mistakes during calculations, feel free to ask!