Calculate 6.1 6x 3- 1000 \( 6.3(16+21) \times 100 \) \( 6.553 \times 20 \div 1000 \) Which is smaller. \( \frac{3}{5} \) OR \( \frac{7}{35} \) Simphily, without the use of a calculithor: \( 8.1 \frac{5}{8}+\frac{2}{4} \) \( 33 \quad 2 \frac{1}{5}-\frac{3}{5} \) 8. \( \frac{2}{7} \times \frac{3}{5} \) \( 14+\frac{2}{5} \div \frac{1}{4} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve these calculations step by step: 1. For \( 6.1 \times 6 \times 3 - 1000 \): \( 6.1 \times 6 = 36.6 \) \( 36.6 \times 3 = 109.8 \) \( 109.8 - 1000 = -890.2 \) 2. For \( 6.3(16 + 21) \times 100 \): \( 16 + 21 = 37 \) \( 6.3 \times 37 = 233.1 \) \( 233.1 \times 100 = 23310 \) 3. For \( 6.553 \times 20 \div 1000 \): \( 6.553 \times 20 = 131.06 \) \( 131.06 \div 1000 = 0.13106 \) 4. Comparing \( \frac{3}{5} \) and \( \frac{7}{35} \): Simplifying \( \frac{7}{35} \) gives \( \frac{1}{5} \). Since \( \frac{3}{5} > \frac{1}{5} \), \( \frac{7}{35} \) is smaller. 5. For \( 8.1 \frac{5}{8} + \frac{2}{4} \): Convert \( 8.1 \) to a fraction: \( 8.1 = 8 + \frac{1}{10} = \frac{81}{10} \). \( 8.1 \frac{5}{8} = 8 + \frac{5}{8} \) which gives \( \frac{64}{8} + \frac{5}{8} = \frac{69}{8} \). \( \frac{2}{4} = \frac{1}{2} = \frac{4}{8} \). Hence, \( \frac{69}{8} + \frac{4}{8} = \frac{73}{8} = 9.125 \). 6. For \( 33 \quad 2 \frac{1}{5} - \frac{3}{5} \): Converting \( 33 \) to a fraction, \( 2 \frac{1}{5} = 2 + \frac{1}{5} = \frac{11}{5} \). So, \( 33 \frac{11}{5} - \frac{3}{5} = 33 + \frac{11}{5} - \frac{3}{5} = 33 + \frac{8}{5} \). This is \( 33 + 1.6 = 34.6 \). 7. For \( \frac{2}{7} \times \frac{3}{5} \): Multiply \( \frac{2 \times 3}{7 \times 5} = \frac{6}{35} \). 8. For \( 14 + \frac{2}{5} \div \frac{1}{4} \): \( \frac{2}{5} \div \frac{1}{4} = \frac{2}{5} \times 4 = \frac{8}{5} \). So, \( 14 + \frac{8}{5} = 14 + 1.6 = 15.6 \). Now you have your results for each expression! If you need further insights on how to use these in real life or tips to avoid mistakes during calculations, feel free to ask!