A cube of platinum of edge length 0.034 mm (density \( =21.4 \frac{g}{\mathrm{~cm}^{3}} \) ), Round your answer to 2 significant digits. mass: \( \square \mathrm{g} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the mass of the platinum cube, first calculate the volume \( V \) of the cube using the formula \( V = \text{edge length}^3 \). So, \( V = (0.034 \, \text{mm})^3 = 0.000039304 \, \text{mm}^3 \). Convert this to cubic centimeters: \( 0.000039304 \, \text{mm}^3 = 0.000000039304 \, \text{cm}^3 \) (since \( 1 \, \text{cm} = 10 \, \text{mm} \)). Now, use the density to find mass: \[ \text{mass} = \text{density} \times \text{volume} = 21.4 \, \frac{g}{\text{cm}^3} \times 0.000000039304 \, \text{cm}^3 \approx 0.000000000842 \, g \] This rounds to \( 0.00 \, g \) since it’s less than the smallest significant digit.