A cube of platinum of edge length 0.034 mm (density \( =21.4 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \) ). Round your answer to 2 significant digits. mass: \( \square \mathrm{g} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find the mass of the platinum cube, first, we calculate its volume. The volume \( V \) of a cube is given by the formula \( V = \text{edge length}^3 \). For the given edge length of 0.034 mm, we convert it to centimeters: 0.034 mm = 0.0034 cm. Now calculate the volume: \( V = (0.0034 \, \text{cm})^3 = 4.0 \times 10^{-8} \, \text{cm}^3 \). Now, we use the density formula \( \text{mass} = \text{density} \times \text{volume} \). Given the density of platinum is \( 21.4 \, \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \), \[ \text{mass} = 21.4 \, \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times 4.0 \times 10^{-8} \, \text{cm}^3 = 8.56 \times 10^{-7} \, \text{g}. \] Rounding to two significant digits, the mass of the platinum cube is \( 0.00000086 \, \text{g} \) or, expressed in scientific notation, \( 8.6 \times 10^{-7} \, \text{g} \). Thus, the answer is \( \text{mass} = 0.00000086 \, \text{g} \) or \( 8.6 \times 10^{-7} \, \text{g} \).