Question
upstudy study bank question image url

Solve the equation. \[ 2=\frac{7}{2 x-1}+\frac{-3}{(2 x-1)^{2}} \]

Ask by Murray Vega. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The solutions are \(x = 2\) and \(x = \frac{3}{4}\).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

To solve the equation \[ 2 = \frac{7}{2x - 1} + \frac{-3}{(2x - 1)^2}, \] we first eliminate the fractions by multiplying both sides by \((2x - 1)^2\): \[ 2(2x - 1)^2 = 7(2x - 1) - 3. \] Expanding both sides: \[ 2(4x^2 - 4x + 1) = 14x - 7 - 3. \] \[ 8x^2 - 8x + 2 = 14x - 10. \] Next, we move all terms to one side of the equation: \[ 8x^2 - 8x + 2 - 14x + 10 = 0, \] which simplifies to \[ 8x^2 - 22x + 12 = 0. \] Now, we can divide the entire equation by 2: \[ 4x^2 - 11x + 6 = 0. \] Next, we will use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 4, b = -11, c = 6 \): Calculating the discriminant: \[ b^2 - 4ac = (-11)^2 - 4(4)(6) = 121 - 96 = 25. \] Now substituting it into the formula gives: \[ x = \frac{11 \pm \sqrt{25}}{8} = \frac{11 \pm 5}{8}. \] This results in two possible solutions: 1. \( x = \frac{16}{8} = 2 \) 2. \( x = \frac{6}{8} = \frac{3}{4} \) Thus, the solutions to the equation are \[ x = 2 \quad \text{and} \quad x = \frac{3}{4}. \]

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy