Question
upstudy study bank question image url

363. V pravilnem šestkotniku \( A B C D E F \) s stranico a narišite vektorja \( \overline{F B} \) in \( \overrightarrow{D F} \) ter ju izrazite z vektorjema \( \vec{a}=\overrightarrow{D E} \) in \( \bar{b}=\overrightarrow{C B} \). Koliko meri kot med vektorjema \( \overrightarrow{F B} \) in \( \overrightarrow{D F} \) ?

Ask by George Barber. in Slovenia
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Kot med vektorjema \( \overrightarrow{F B} \) in \( \overrightarrow{D F} \) je \( 120^\circ \).

Solution

Da rešimo problem, najprej definiramo točke pravilnega šestkotnika \( A B C D E F \) in njihove koordinate. V pravilnem šestkotniku so točke razporejene enakomerno okoli izhodišča. Predpostavimo, da je središče šestkotnika v izhodišču in da je stranica \( a \). Koordinate točk so: - \( A( a, 0) \) - \( B\left( \frac{a}{2}, \frac{a \sqrt{3}}{2} \right) \) - \( C\left( -\frac{a}{2}, \frac{a \sqrt{3}}{2} \right) \) - \( D(-a, 0) \) - \( E\left( -\frac{a}{2}, -\frac{a \sqrt{3}}{2} \right) \) - \( F\left( \frac{a}{2}, -\frac{a \sqrt{3}}{2} \right) \) Sedaj bomo izračunali vektorje \( \overline{F B} \) in \( \overrightarrow{D F} \). 1. **Izračunajmo vektor \( \overline{F B} \)**: \[ \overline{F B} = B - F = \left( \frac{a}{2}, \frac{a \sqrt{3}}{2} \right) - \left( \frac{a}{2}, -\frac{a \sqrt{3}}{2} \right) = \left( 0, a \sqrt{3} \right) \] 2. **Izračunajmo vektor \( \overrightarrow{D F} \)**: \[ \overrightarrow{D F} = F - D = \left( \frac{a}{2}, -\frac{a \sqrt{3}}{2} \right) - (-a, 0) = \left( \frac{a}{2} + a, -\frac{a \sqrt{3}}{2} \right) = \left( \frac{3a}{2}, -\frac{a \sqrt{3}}{2} \right) \] 3. **Izrazimo vektorje \( \overline{F B} \) in \( \overrightarrow{D F} \) z vektorjema \( \vec{a} = \overrightarrow{D E} \) in \( \bar{b} = \overrightarrow{C B} \)**: - Vektor \( \vec{a} = \overrightarrow{D E} = E - D = \left( -\frac{a}{2}, -\frac{a \sqrt{3}}{2} \right) - (-a, 0) = \left( \frac{a}{2}, -\frac{a \sqrt{3}}{2} \right) \) - Vektor \( \bar{b} = \overrightarrow{C B} = B - C = \left( \frac{a}{2}, \frac{a \sqrt{3}}{2} \right) - \left( -\frac{a}{2}, \frac{a \sqrt{3}}{2} \right) = \left( a, 0 \right) \) Sedaj lahko izrazimo vektorje \( \overline{F B} \) in \( \overrightarrow{D F} \): - \( \overline{F B} = \bar{b} \cdot \sqrt{3} \) - \( \overrightarrow{D F} = \frac{3}{2} \vec{a} + \bar{b} \) 4. **Izračunajmo kot med vektorjema \( \overrightarrow{F B} \) in \( \overrightarrow{D F} \)**: Kot med dvema vektorjema \( \vec{u} \) in \( \vec{v} \) lahko izračunamo s formulo: \[ \cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \] Izračunajmo dolžine vektorjev in njihov skalarni produkt: - Dolžina \( \overline{F B} \): \[ |\overline{F B}| = a \sqrt{3} \] - Dolžina \( \overrightarrow{D F} \): \[ |\overrightarrow{D F}| = \sqrt{\left( \frac{3a}{2} \right)^2 + \left( -\frac{a \sqrt{3}}{2} \right)^2} = \sqrt{\frac{9a^2}{4} + \frac{3a^2}{4}} = \sqrt{3a^2} = a \sqrt{3} \] - Skalarni produkt: \[ \overline{F B} \cdot \overrightarrow{D F} = (0, a \sqrt{3}) \cdot \left( \frac{3a}{2}, -\frac{a \sqrt{3}}{2} \right) = 0 \cdot \frac{3a}{2} + a \sqrt{3} \cdot \left( -\frac{a \sqrt{3}}{2} \right) = -\frac{3a^2}{2} \] Sedaj lahko izračunamo kot: \[ \cos(\theta) = \frac{-\frac{3a^2}{2}}{(a \sqrt{3})(a \sqrt{3})} = \frac{-\frac{3a^2}{2}}{3a^2} = -\frac{1}{2} \] Zato je: \[ \theta = \cos^{-1}\left(-\frac{1}{2}\right) = 120^\circ \] Tako kot med vektorjema \( \overrightarrow{F B} \) in \( \overrightarrow{D F} \) meri \( 120^\circ \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

V pravilnem šestkotniku \( ABCDEF \) so vse stranice enake dolžine \( a \), notranji koti so vsi enaki, in vsaka stranica je enako oddaljena od središča. Vektor \( \overline{F B} \) poteka od točke \( F \) do \( B \), medtem ko vektor \( \overrightarrow{D F} \) poteka od točke \( D \) do \( F \). V vektorjih zapišemo \( \overline{F B} = -\vec{a} - \bar{b} \) in \( \overrightarrow{D F} = \bar{b} \). Da izračunamo kot med obema vektorjema, lahko uporabimo formulo za skalarni produkt: \[ \cos(\theta) = \frac{\overline{F B} \cdot \overrightarrow{D F}}{|\overline{F B}| |\overrightarrow{D F}|}. \] Z upoštevanjem, da so vektorji ortogonalni do 120°, je kot med njimi 120° oziroma \( \frac{2\pi}{3} \) radianov.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy