Question
upstudy study bank question image url

a) \( \left(\frac{1}{2} a-\frac{1}{3} b\right)\left(\frac{1}{4} a^{2}-\frac{2}{3} a b+\frac{1}{2} b^{2}\right) \)

Ask by West Gray. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The expanded form of the expression is: \[ \frac{1}{8}a^{3} - \frac{5}{12}a^{2}b + \frac{17}{36}ab^{2} - \frac{1}{6}b^{3} \]

Solution

To expand the expression: \[ \left(\frac{1}{2} a - \frac{1}{3} b\right)\left(\frac{1}{4} a^{2} - \frac{2}{3} a b + \frac{1}{2} b^{2}\right) \] we'll use the distributive property (also known as the FOIL method for binomials). This involves multiplying each term in the first parenthesis by each term in the second parenthesis. **Step-by-Step Expansion:** 1. **Multiply \(\frac{1}{2}a\) by each term in the second parenthesis:** - \(\frac{1}{2}a \times \frac{1}{4}a^{2} = \frac{1}{8}a^{3}\) - \(\frac{1}{2}a \times \left(-\frac{2}{3}ab\right) = -\frac{1}{3}a^{2}b\) - \(\frac{1}{2}a \times \frac{1}{2}b^{2} = \frac{1}{4}ab^{2}\) 2. **Multiply \(-\frac{1}{3}b\) by each term in the second parenthesis:** - \(-\frac{1}{3}b \times \frac{1}{4}a^{2} = -\frac{1}{12}a^{2}b\) - \(-\frac{1}{3}b \times \left(-\frac{2}{3}ab\right) = \frac{2}{9}ab^{2}\) - \(-\frac{1}{3}b \times \frac{1}{2}b^{2} = -\frac{1}{6}b^{3}\) **Combine like terms:** - **\(a^{3}\) term:** \(\frac{1}{8}a^{3}\) - **\(a^{2}b\) terms:** \(-\frac{1}{3}a^{2}b - \frac{1}{12}a^{2}b = -\frac{5}{12}a^{2}b\) - **\(ab^{2}\) terms:** \(\frac{1}{4}ab^{2} + \frac{2}{9}ab^{2} = \frac{17}{36}ab^{2}\) - **\(b^{3}\) term:** \(-\frac{1}{6}b^{3}\) **Final Expanded Form:** \[ \frac{1}{8}a^{3} - \frac{5}{12}a^{2}b + \frac{17}{36}ab^{2} - \frac{1}{6}b^{3} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To expand the expression \( \left(\frac{1}{2} a - \frac{1}{3} b\right)\left(\frac{1}{4} a^{2} - \frac{2}{3} ab + \frac{1}{2} b^{2}\right) \), we can use the distributive property (also known as the FOIL method for binomials). This means we'll multiply each term in the first factor by each term in the second factor. 1. First, multiply \( \frac{1}{2} a \) by each term in the second expression: - \( \frac{1}{2} a \cdot \frac{1}{4} a^2 = \frac{1}{8} a^3 \) - \( \frac{1}{2} a \cdot \left(-\frac{2}{3} ab\right) = -\frac{1}{3} a^2 b \) - \( \frac{1}{2} a \cdot \frac{1}{2} b^2 = \frac{1}{4} ab^2 \) 2. Next, multiply \( -\frac{1}{3} b \) by each term in the second expression: - \( -\frac{1}{3} b \cdot \frac{1}{4} a^2 = -\frac{1}{12} a^2 b \) - \( -\frac{1}{3} b \cdot \left(-\frac{2}{3} ab\right) = \frac{2}{9} ab^2 \) - \( -\frac{1}{3} b \cdot \frac{1}{2} b^2 = -\frac{1}{6} b^3 \) 3. Now, combine all these results: \[ \frac{1}{8} a^3 + \left(-\frac{1}{3} a^2 b - \frac{1}{12} a^2 b\right) + \left(\frac{1}{4} ab^2 + \frac{2}{9} ab^2\right) - \frac{1}{6} b^3 \] 4. Combine like terms: - For \( a^2b \): \[ -\frac{1}{3} a^2 b - \frac{1}{12} a^2 b = -\frac{4}{12} a^2 b - \frac{1}{12} a^2 b = -\frac{5}{12} a^2 b \] - For \( ab^2 \): \[ \frac{1}{4} ab^2 + \frac{2}{9} ab^2 = \left(\frac{9}{36} + \frac{8}{36}\right)ab^2 = \frac{17}{36} ab^2 \] Finally, we can write the expanded expression as: \[ \frac{1}{8} a^3 - \frac{5}{12} a^2 b + \frac{17}{36} ab^2 - \frac{1}{6} b^3 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy