Answer
The solutions are:
1. \( x = 1 \) and \( x = 4 \)
2. \( x = 16 \)
Solution
Sure, let's solve each of the given equations step by step.
---
### **Problem (1):**
\[ x - 3x^{\frac{1}{2}} + 2 = 0 \]
#### **Solution:**
1. **Substitution:**
Let \( y = \sqrt{x} \). Then, \( x = y^2 \).
2. **Rewrite the Equation:**
Substitute \( x = y^2 \) into the original equation:
\[
y^2 - 3y + 2 = 0
\]
3. **Solve the Quadratic Equation:**
\[
y^2 - 3y + 2 = 0
\]
Factor the quadratic:
\[
(y - 1)(y - 2) = 0
\]
So, \( y = 1 \) or \( y = 2 \).
4. **Back-Substitute to Find \( x \):**
- If \( y = 1 \):
\[
\sqrt{x} = 1 \implies x = 1^2 = 1
\]
- If \( y = 2 \):
\[
\sqrt{x} = 2 \implies x = 2^2 = 4
\]
5. **Solutions:**
\[
x = 1 \quad \text{and} \quad x = 4
\]
---
### **Problem (3):**
\[ x^{\frac{1}{2}} + 3x^{\frac{1}{4}} - 10 = 0 \]
#### **Solution:**
1. **Substitution:**
Let \( y = x^{\frac{1}{4}} \). Then, \( x^{\frac{1}{2}} = y^2 \).
2. **Rewrite the Equation:**
Substitute \( y = x^{\frac{1}{4}} \) into the original equation:
\[
y^2 + 3y - 10 = 0
\]
3. **Solve the Quadratic Equation:**
\[
y^2 + 3y - 10 = 0
\]
Use the quadratic formula:
\[
y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Here, \( a = 1 \), \( b = 3 \), and \( c = -10 \):
\[
y = \frac{-3 \pm \sqrt{9 + 40}}{2} = \frac{-3 \pm \sqrt{49}}{2} = \frac{-3 \pm 7}{2}
\]
So,
\[
y = \frac{4}{2} = 2 \quad \text{or} \quad y = \frac{-10}{2} = -5
\]
4. **Discard Negative Solution:**
Since \( y = x^{\frac{1}{4}} \) represents a real number (assuming \( x \) is real and non-negative), we discard \( y = -5 \).
5. **Back-Substitute to Find \( x \):**
\[
y = 2 \implies x^{\frac{1}{4}} = 2 \implies x = 2^4 = 16
\]
6. **Solution:**
\[
x = 16
\]
---
### **Final Answers:**
1. **For \( x - 3x^{\frac{1}{2}} + 2 = 0 \):**
\[
x = 1 \quad \text{and} \quad x = 4
\]
2. **For \( x^{\frac{1}{2}} + 3x^{\frac{1}{4}} - 10 = 0 \):**
\[
x = 16
\]
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution