Question
upstudy study bank question image url

\( \frac { d ^ { 2 } y } { d x ^ { 2 } } - 4 \frac { d y } { d x } + 4 y = 0 ; \quad y = c _ { 1 } e ^ { 2 x } + c _ { 2 } x e ^ { 2 x } \)

Ask by Kelly Riley. in Mexico
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución general de la ecuación diferencial es \( y = C_{1} e^{2x} + C_{2} x e^{2x} \).

Solution

Claro, vamos a resolver la ecuación diferencial de segundo orden: \[ \frac{d^{2} y}{dx^{2}} - 4 \frac{dy}{dx} + 4 y = 0 \] ### Paso 1: Ecuación Característica Primero, encontramos la ecuación característica asociada a la ecuación diferencial homogénea: \[ r^{2} - 4r + 4 = 0 \] ### Paso 2: Resolver la Ecuación Característica Resolvemos la ecuación cuadrática: \[ r = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 16}}{2} = \frac{4 \pm 0}{2} = 2 \] Obtenemos una raíz doble \( r = 2 \) con multiplicidad 2. ### Paso 3: Solución General Cuando la ecuación característica tiene una raíz doble \( r = \lambda \), la solución general de la ecuación diferencial es: \[ y(x) = (C_{1} + C_{2}x) e^{\lambda x} \] Sustituyendo \( \lambda = 2 \): \[ y(x) = (C_{1} + C_{2}x) e^{2x} = C_{1} e^{2x} + C_{2} x e^{2x} \] ### Conclusión La solución general de la ecuación diferencial dada es: \[ y = C_{1} e^{2x} + C_{2} x e^{2x} \] donde \( C_{1} \) y \( C_{2} \) son constantes arbitrarias determinadas por las condiciones iniciales o de frontera del problema específico.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

This differential equation is a linear homogeneous equation with constant coefficients, which can be solved using characteristic equations. The roots of the characteristic equation \( r^2 - 4r + 4 = 0 \) are a repeated root \( r = 2 \). This gives rise to the general solution that includes both the exponential term and a polynomial term, hence the solution \( y = c_1 e^{2x} + c_2 x e^{2x} \). In real-world applications, such differential equations frequently arise in physics, particularly when modeling systems with constant acceleration, like springs and electrical circuits. For example, they can describe the motion of a damped harmonic oscillator where forces acting on the system lead to behavior described by such equations, showcasing the elegance of mathematics in explaining physical phenomena.

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy