Question
12:15 Composition of Functions Using the following equations, find \( g(f(x)) \) : \[ \begin{array}{c} f(x)=2 x \\ g(x)=9 x+3 \\ g(f(x))=[?] x+ \end{array} \]
Ask by Edwards Goodwin. in the United States
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( g(f(x)) = 18x + 3 \)
Solution
To find the composition \( g(f(x)) \), we'll substitute the function \( f(x) \) into the function \( g(x) \).
**Given:**
\[
\begin{align*}
f(x) &= 2x \\
g(x) &= 9x + 3
\end{align*}
\]
**Step-by-Step Solution:**
1. **Find \( g(f(x)) \):**
\[
g(f(x)) = g(2x)
\]
2. **Substitute \( f(x) = 2x \) into \( g(x) \):**
\[
g(2x) = 9(2x) + 3
\]
3. **Simplify the expression:**
\[
9(2x) = 18x \\
18x + 3 = 18x + 3
\]
4. **Final Composition:**
\[
g(f(x)) = 18x + 3
\]
**Answer:**
\[
g(f(x)) = 18x + 3
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
To find \( g(f(x)) \), we first need to substitute \( f(x) \) into \( g(x) \). Given \( f(x) = 2x \), we can plug this into \( g(x) = 9x + 3 \): 1. Substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(2x) \] 2. Now, replace \( x \) in \( g(x) \) with \( 2x \): \[ g(2x) = 9(2x) + 3 = 18x + 3 \] Hence, \( g(f(x)) = 18x + 3 \). So, the answer is: \[ g(f(x)) = 18x + 3 \]