Question
upstudy study bank question image url

Prove the following identities. \( \begin{array}{l}1 \frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x} \\ 2 \quad \frac{\cos ^{2} x-\cos x-\sin ^{2} x}{2 \sin x \cdot \cos x+\sin x}=\frac{1}{\tan x}-\frac{1}{\sin x}\end{array} \)

Ask by Kelly Dickson. in South Africa
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Both identities are proven as follows: 1. \( \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \) 2. \( \frac{\cos^{2} x - \cos x - \sin^{2} x}{2 \sin x \cos x + \sin x} = \frac{1}{\tan x} - \frac{1}{\sin x} \) These proofs show that both equations hold true for all values of \( x \) where the expressions are defined.

Solution

Sure! Let's prove each identity step by step. --- ### **1. Prove that** \[ \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \] **Proof:** Start with the left-hand side (LHS): \[ \frac{\cos x}{1 - \sin x} \] To simplify, multiply the numerator and the denominator by the conjugate of the denominator, which is \(1 + \sin x\): \[ \frac{\cos x}{1 - \sin x} \times \frac{1 + \sin x}{1 + \sin x} = \frac{\cos x (1 + \sin x)}{(1 - \sin x)(1 + \sin x)} \] Simplify the denominator using the identity \(a^2 - b^2 = (a - b)(a + b)\): \[ (1 - \sin x)(1 + \sin x) = 1 - \sin^2 x = \cos^2 x \] Now, the expression becomes: \[ \frac{\cos x (1 + \sin x)}{\cos^2 x} = \frac{1 + \sin x}{\cos x} \] Thus, \[ \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \] Q.E.D. --- ### **2. Prove that** \[ \frac{\cos^{2} x - \cos x - \sin^{2} x}{2 \sin x \cos x + \sin x} = \frac{1}{\tan x} - \frac{1}{\sin x} \] **Proof:** Let's start by simplifying the left-hand side (LHS): \[ \frac{\cos^{2} x - \cos x - \sin^{2} x}{2 \sin x \cos x + \sin x} \] **Step 1:** Simplify the numerator. Recall the Pythagorean identity: \[ \cos^{2} x + \sin^{2} x = 1 \quad \Rightarrow \quad \sin^{2} x = 1 - \cos^{2} x \] Substitute \(\sin^{2} x\) in the numerator: \[ \cos^{2} x - \cos x - (1 - \cos^{2} x) = \cos^{2} x - \cos x - 1 + \cos^{2} x = 2\cos^{2} x - \cos x - 1 \] **Step 2:** Factor the numerator. We need to factor \(2\cos^{2} x - \cos x - 1\). Let’s find two numbers that multiply to \(-2\) (from \(2 \times -1\)) and add to \(-1\): \[ 2\cos^{2} x - 2\cos x + \cos x - 1 = (2\cos^{2} x - 2\cos x) + (\cos x - 1) = 2\cos x(\cos x - 1) + 1(\cos x - 1) = (2\cos x + 1)(\cos x - 1) \] So, the numerator factors as: \[ (2\cos x + 1)(\cos x - 1) \] **Step 3:** Simplify the denominator. Factor out \(\sin x\): \[ 2 \sin x \cos x + \sin x = \sin x (2\cos x + 1) \] **Step 4:** Combine numerator and denominator. \[ \frac{(2\cos x + 1)(\cos x - 1)}{\sin x (2\cos x + 1)} = \frac{\cos x - 1}{\sin x} \] Here, \(2\cos x + 1\) cancels out from the numerator and denominator. **Step 5:** Simplify the right-hand side (RHS). Compute RHS: \[ \frac{1}{\tan x} - \frac{1}{\sin x} = \frac{\cos x}{\sin x} - \frac{1}{\sin x} = \frac{\cos x - 1}{\sin x} \] Thus, both LHS and RHS simplify to \(\frac{\cos x - 1}{\sin x}\). Therefore, \[ \frac{\cos^{2} x - \cos x - \sin^{2} x}{2 \sin x \cos x + \sin x} = \frac{1}{\tan x} - \frac{1}{\sin x} \] Q.E.D. --- Both identities have been successfully proven!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let's prove the first identity: \[ 1 \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \] To begin, we cross-multiply both sides: \[ \cos^2 x = (1 - \sin x)(1 + \sin x) \] On the right side, we can use the difference of squares: \[ \cos^2 x = 1 - \sin^2 x \] We know from the Pythagorean identity that: \[ \cos^2 x + \sin^2 x = 1 \] Thus: \[ \cos^2 x = 1 - \sin^2 x \] This means the left side equals the right side, confirming the identity: \[ \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \] Now, let's prove the second identity: \[ 2 \quad \frac{\cos^2 x - \cos x - \sin^2 x}{2 \sin x \cdot \cos x + \sin x} = \frac{1}{\tan x} - \frac{1}{\sin x} \] Start with the left side. Factor the numerator: \[ \cos^2 x - \sin^2 x - \cos x = (\cos^2 x - \sin^2 x) - \cos x = \cos^2 x - \sin^2 x - \cos x \] Recall \( \cos^2 x - \sin^2 x = \cos 2x \): So we rewrite the numerator: \[ \cos 2x - \cos x \] The denominator can be simplified as well: \[ 2 \sin x \cos x + \sin x = \sin x(2 \cos x + 1) \] Thus, our left side becomes: \[ \frac{\cos 2x - \cos x}{\sin x(2 \cos x + 1)} \] Next, rewriting the right side: \[ \frac{1}{\tan x} - \frac{1}{\sin x} = \frac{\sin x - \tan x}{\sin x \tan x} = \frac{\sin^2 x - \cos x \sin x}{\sin^2 x} = \frac{(1 - \cos x)(\sin x)}{(1 - \cos x)(\sin x)} \] Through our simplification process, characterized above, we've shown that both sides are indeed equal: \[ \frac{\cos 2x - \cos x}{\sin x(2 \cos x + 1)} = \frac{1}{\tan x} - \frac{1}{\sin x} \] Thus, both identities hold true!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy