Let \( X \) and \( Y \) be two jointly continuous random variables with pdf \[ f_{x, Y}(x, y)=\left\{\begin{array}{ll}6 x y & \text { if } 0 \leq x \leq 1, \quad 0 \leq y \leq \sqrt{x} \\ 0 & \text { otherwise }\end{array}\right. \] a. Find \( f_{x}(x) \) and \( f_{y}(y) \) b. Find the conditional pdf of \( X \) given \( Y=y, f_{x \mid Y}(x \mid y) \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To solve the problem, we will first derive the marginal probability density functions (pdfs) \( f_{X}(x) \) and \( f_{Y}(y) \), and then we will find the conditional pdf \( f_{X|Y}(x|y) \). ### a. Finding \( f_{X}(x) \) and \( f_{Y}(y) \) **Step 1: Finding \( f_{X}(x) \)** The marginal pdf of \( X \) can be found by integrating the joint pdf \( f_{X,Y}(x,y) \) over all possible values of \( y \): \[ f_{X}(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_{0}^{\sqrt{x}} 6xy \, dy \] for \( 0 \leq x \leq 1 \). We compute the integral: \[ f_{X}(x) = \int_{0}^{\sqrt{x}} 6xy \, dy = 6x \int_{0}^{\sqrt{x}} y \, dy = 6x \left[ \frac{y^2}{2} \right]_{0}^{\sqrt{x}} = 6x \cdot \frac{x}{2} = 3x^2 \] Thus, \[ f_{X}(x) = \begin{cases} 3x^2 & \text{if } 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} \] **Step 2: Finding \( f_{Y}(y) \)** Next, we find the marginal pdf of \( Y \) by integrating the joint pdf over \( x \): \[ f_{Y}(y) = \int_{0}^{1} f_{X,Y}(x,y) \, dx = \int_{y^2}^{1} 6xy \, dx \] The limits of integration for \( x \) are from \( y^2 \) to \( 1 \) because for \( f_{X,Y}(x,y) \) to be non-zero, we need \( 0 \leq y \leq \sqrt{x} \Rightarrow y^2 \leq x \leq 1 \). We compute the integral as follows: \[ f_{Y}(y) = 6y \int_{y^2}^{1} x \, dx = 6y \left[ \frac{x^2}{2} \right]_{y^2}^{1} = 6y \left( \frac{1}{2} - \frac{(y^2)^2}{2} \right) = 6y \left( \frac{1}{2} - \frac{y^4}{2} \right) = 3y(1 - y^4) \] Thus, \[ f_{Y}(y) = \begin{cases} 3y(1 - y^4) & \text{if } 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases} \] ### b. Finding the conditional pdf of \( X \) given \( Y=y \) The conditional pdf \( f_{X|Y}(x|y) \) is calculated using the formula: \[ f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)} \] Substituting \( f_{X,Y}(x,y) \) and \( f_{Y}(y) \): \[ f_{X|Y}(x|y) = \frac{6xy}{3y(1 - y^4)} = \frac{2x}{1 - y^4} \] for \( y^2 \leq x \leq 1 \) (assuming \( 0 \leq y \leq 1 \)). Thus: \[ f_{X|Y}(x|y) = \begin{cases} \frac{2x}{1 - y^4} & \text{if } y^2 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases} \] And that completes the solution!