Question
upstudy study bank question image url

Find the exact value of the expression. \[ \frac{\tan 15^{\circ}+\tan 30^{\circ}}{1-\tan 15^{\circ} \tan 30^{\circ}} \] \( \frac{\tan 15^{\circ}+\tan 30^{\circ}}{1-\tan 15^{\circ} \tan 30^{\circ}}=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Ask by Sanders Estrada. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The exact value of the expression is \(1\).

Solution

The given expression is: \[ \frac{\tan 15^{\circ} + \tan 30^{\circ}}{1 - \tan 15^{\circ} \tan 30^{\circ}} \] This expression closely resembles the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] By comparing, we can identify \( A = 15^{\circ} \) and \( B = 30^{\circ} \). Applying the formula: \[ \frac{\tan 15^{\circ} + \tan 30^{\circ}}{1 - \tan 15^{\circ} \tan 30^{\circ}} = \tan(15^{\circ} + 30^{\circ}) = \tan 45^{\circ} \] We know that: \[ \tan 45^{\circ} = 1 \] Therefore, the exact value of the expression is: \[ 1 \] **Answer:** \(1\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the expression \[ \frac{\tan 15^{\circ}+\tan 30^{\circ}}{1-\tan 15^{\circ} \tan 30^{\circ}}, \] we begin by recalling the tangent values for \(15^{\circ}\) and \(30^{\circ}\). 1. **Calculate \(\tan 30^{\circ}\)**: \[ \tan 30^{\circ} = \frac{1}{\sqrt{3}}. \] 2. **Calculate \(\tan 15^{\circ}\)** using the tangent subtraction formula: \[ \tan(15^{\circ}) = \tan(45^{\circ} - 30^{\circ}) = \frac{\tan 45^{\circ} - \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}}. \] Simplifying the numerator: \[ 1 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}}. \] Simplifying the denominator: \[ 1 + \frac{1}{\sqrt{3}} = \frac{\sqrt{3} + 1}{\sqrt{3}}. \] Thus, \[ \tan 15^{\circ} = \frac{\frac{\sqrt{3} - 1}{\sqrt{3}}}{\frac{\sqrt{3} + 1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}. \] Now, substituting \(\tan 15^{\circ}\) and \(\tan 30^{\circ}\) into the original expression: \[ \frac{\frac{\sqrt{3} - 1}{\sqrt{3} + 1} + \frac{1}{\sqrt{3}}}{1 - \left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\right) \left(\frac{1}{\sqrt{3}}\right)}. \] 3. **Combine the terms in the numerator**: Finding a common denominator (\(\sqrt{3} + 1\)): \[ \frac{\sqrt{3} - 1}{\sqrt{3} + 1} + \frac{1}{\sqrt{3}} = \frac{(\sqrt{3} - 1) \cdot \sqrt{3} + (\sqrt{3} + 1)}{\sqrt{3}(\sqrt{3} + 1)}. \] Simplifying the numerator: \[ \sqrt{3}(\sqrt{3} - 1) + (\sqrt{3} + 1) = 3 - \sqrt{3} + \sqrt{3} + 1 = 4. \] So, the numerator becomes: \[ \frac{4}{\sqrt{3}(\sqrt{3} + 1)}. \] 4. **Now for the denominator**: \[ 1 - \left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\cdot\frac{1}{\sqrt{3}}\right) = 1 - \frac{\sqrt{3} - 1}{3 + \sqrt{3}}. \] Simplifying: \[ 1 = \frac{3 + \sqrt{3}}{3 + \sqrt{3}} \implies \frac{3 + \sqrt{3} - (\sqrt{3} - 1)}{3 + \sqrt{3}} = \frac{3 + \sqrt{3} - \sqrt{3} + 1}{3 + \sqrt{3}} = \frac{4}{3 + \sqrt{3}}. \] 5. **Putting it all together**: Now we can simplify the entire expression: \[ \frac{\frac{4}{\sqrt{3}(\sqrt{3} + 1)}}{\frac{4}{3 + \sqrt{3}}} = \frac{4}{\sqrt{3}(\sqrt{3} + 1)} \cdot \frac{3 + \sqrt{3}}{4} = \frac{3 + \sqrt{3}}{\sqrt

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy