Find the exact value of the expression. \[ \frac{\tan 15^{\circ}+\tan 30^{\circ}}{1-\tan 15^{\circ} \tan 30^{\circ}} \] \( \frac{\tan 15^{\circ}+\tan 30^{\circ}}{1-\tan 15^{\circ} \tan 30^{\circ}}=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To solve the expression \[ \frac{\tan 15^{\circ}+\tan 30^{\circ}}{1-\tan 15^{\circ} \tan 30^{\circ}}, \] we begin by recalling the tangent values for \(15^{\circ}\) and \(30^{\circ}\). 1. **Calculate \(\tan 30^{\circ}\)**: \[ \tan 30^{\circ} = \frac{1}{\sqrt{3}}. \] 2. **Calculate \(\tan 15^{\circ}\)** using the tangent subtraction formula: \[ \tan(15^{\circ}) = \tan(45^{\circ} - 30^{\circ}) = \frac{\tan 45^{\circ} - \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}}. \] Simplifying the numerator: \[ 1 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}}. \] Simplifying the denominator: \[ 1 + \frac{1}{\sqrt{3}} = \frac{\sqrt{3} + 1}{\sqrt{3}}. \] Thus, \[ \tan 15^{\circ} = \frac{\frac{\sqrt{3} - 1}{\sqrt{3}}}{\frac{\sqrt{3} + 1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}. \] Now, substituting \(\tan 15^{\circ}\) and \(\tan 30^{\circ}\) into the original expression: \[ \frac{\frac{\sqrt{3} - 1}{\sqrt{3} + 1} + \frac{1}{\sqrt{3}}}{1 - \left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\right) \left(\frac{1}{\sqrt{3}}\right)}. \] 3. **Combine the terms in the numerator**: Finding a common denominator (\(\sqrt{3} + 1\)): \[ \frac{\sqrt{3} - 1}{\sqrt{3} + 1} + \frac{1}{\sqrt{3}} = \frac{(\sqrt{3} - 1) \cdot \sqrt{3} + (\sqrt{3} + 1)}{\sqrt{3}(\sqrt{3} + 1)}. \] Simplifying the numerator: \[ \sqrt{3}(\sqrt{3} - 1) + (\sqrt{3} + 1) = 3 - \sqrt{3} + \sqrt{3} + 1 = 4. \] So, the numerator becomes: \[ \frac{4}{\sqrt{3}(\sqrt{3} + 1)}. \] 4. **Now for the denominator**: \[ 1 - \left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\cdot\frac{1}{\sqrt{3}}\right) = 1 - \frac{\sqrt{3} - 1}{3 + \sqrt{3}}. \] Simplifying: \[ 1 = \frac{3 + \sqrt{3}}{3 + \sqrt{3}} \implies \frac{3 + \sqrt{3} - (\sqrt{3} - 1)}{3 + \sqrt{3}} = \frac{3 + \sqrt{3} - \sqrt{3} + 1}{3 + \sqrt{3}} = \frac{4}{3 + \sqrt{3}}. \] 5. **Putting it all together**: Now we can simplify the entire expression: \[ \frac{\frac{4}{\sqrt{3}(\sqrt{3} + 1)}}{\frac{4}{3 + \sqrt{3}}} = \frac{4}{\sqrt{3}(\sqrt{3} + 1)} \cdot \frac{3 + \sqrt{3}}{4} = \frac{3 + \sqrt{3}}{\sqrt