Question
upstudy study bank question image url

Resolver para " \( x \) ": \[ \frac{a x}{a+b}+2 a b=\frac{b x}{a-b}+a^{2}-b^{2} \]

Ask by Wheeler Jimenez. in Peru
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( x = a^{2} - b^{2} \)

Solution

Solve the equation \( \frac{a x}{a+b}+2 a b=\frac{b x}{a-b}+a^{2}-b^{2} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{ax}{a+b}+2ab=\frac{bx}{a-b}+a^{2}-b^{2}\) - step1: Multiply both sides of the equation by LCD: \(\left(\frac{ax}{a+b}+2ab\right)\left(a^{2}-b^{2}\right)=\left(\frac{bx}{a-b}+a^{2}-b^{2}\right)\left(a^{2}-b^{2}\right)\) - step2: Simplify the equation: \(\left(a^{2}-ab\right)x+2a^{3}b-2b^{3}a=\left(ab+b^{2}\right)x+a^{4}-2a^{2}b^{2}+b^{4}\) - step3: Move the expression to the left side: \(\left(a^{2}-ab\right)x-\left(ab+b^{2}\right)x=a^{4}-2a^{2}b^{2}+b^{4}-\left(2a^{3}b-2b^{3}a\right)\) - step4: Add and subtract: \(\left(a^{2}-2ab-b^{2}\right)x=a^{4}-2a^{2}b^{2}+b^{4}-\left(2a^{3}b-2b^{3}a\right)\) - step5: Add and subtract: \(\left(a^{2}-2ab-b^{2}\right)x=a^{4}-2a^{2}b^{2}+b^{4}-2a^{3}b+2b^{3}a\) - step6: Divide both sides: \(\frac{\left(a^{2}-2ab-b^{2}\right)x}{a^{2}-2ab-b^{2}}=\frac{a^{4}-2a^{2}b^{2}+b^{4}-2a^{3}b+2b^{3}a}{a^{2}-2ab-b^{2}}\) - step7: Divide the numbers: \(x=a^{2}-b^{2}\) La solución de la ecuación dada es \( x = a^{2} - b^{2} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Para resolver la ecuación dada: \[ \frac{a x}{a+b} + 2 a b = \frac{b x}{a-b} + a^{2} - b^{2} \] Primero, despejamos los términos que contienen \( x \) en un lado y los demás en el otro lado. Restamos \( \frac{b x}{a-b} \) de ambos lados: \[ \frac{a x}{a+b} - \frac{b x}{a-b} = a^{2} - b^{2} - 2 a b \] Ahora, utilizamos un común denominador para los términos en \( x \): \[ \frac{(a(a-b) - b(a+b)) x}{(a+b)(a-b)} = a^{2} - b^{2} - 2ab \] Simplificamos el numerador: \[ a(a-b) - b(a+b) = a^2 - ab - ab - b^2 = a^2 - 2ab - b^2 = (a-b)^{2} \] Por lo tanto, la ecuación se simplifica a: \[ \frac{(a-b)^{2} x}{(a+b)(a-b)} = a^{2} - b^{2} - 2ab \] Cancelando \( a-b \) en ambos lados (siempre que \( a \neq b \)): \[ \frac{(a-b) x}{(a+b)} = a - b \] Finalmente, multiplicamos ambos lados por \( \frac{a+b}{a-b} \): \[ x = \frac{(a-b)(a+b)}{(a-b)} = a+b \] Así que la solución es: \[ x = a + b \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy