Question
upstudy study bank question image url

Activity 10 Simplify the following \( \frac{\text { expressions }}{\text { a) } \frac{x^{2}+5 x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5 x+6}} \) b) \( \frac{x}{x-2}-\frac{1}{x+2}+\frac{8}{4-x^{2}} \)

Ask by Marshall Peterson. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) The simplified expression is \( 1 \). b) The simplified expression is \( \frac{x+3}{x+2} \).

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{2}+5x+6\right)}{\left(x^{2}-9\right)}}{\left(\frac{\left(x^{2}-4\right)}{\left(x^{2}-5x+6\right)}\right)}\) - step1: Remove the parentheses: \(\frac{\frac{x^{2}+5x+6}{x^{2}-9}}{\frac{x^{2}-4}{x^{2}-5x+6}}\) - step2: Divide the terms: \(\frac{\frac{x+2}{x-3}}{\frac{x^{2}-4}{x^{2}-5x+6}}\) - step3: Divide the terms: \(\frac{\frac{x+2}{x-3}}{\frac{x+2}{x-3}}\) - step4: Divide the terms: \(1\) Calculate or simplify the expression \( x/(x-2) - 1/(x+2) + 8/(4-x^2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{\left(x-2\right)}-\frac{1}{\left(x+2\right)}+\frac{8}{\left(4-x^{2}\right)}\) - step1: Remove the parentheses: \(\frac{x}{x-2}-\frac{1}{x+2}+\frac{8}{4-x^{2}}\) - step2: Rewrite the fractions: \(\frac{x}{x-2}-\frac{1}{x+2}-\frac{8}{-4+x^{2}}\) - step3: Factor the expression: \(\frac{x}{x-2}-\frac{1}{x+2}-\frac{8}{\left(x+2\right)\left(x-2\right)}\) - step4: Reduce fractions to a common denominator: \(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{8}{\left(x+2\right)\left(x-2\right)}\) - step5: Rewrite the expression: \(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{8}{\left(x+2\right)\left(x-2\right)}\) - step6: Transform the expression: \(\frac{x\left(x+2\right)-\left(x-2\right)-8}{\left(x+2\right)\left(x-2\right)}\) - step7: Multiply the terms: \(\frac{x^{2}+2x-\left(x-2\right)-8}{\left(x+2\right)\left(x-2\right)}\) - step8: Calculate: \(\frac{x^{2}+x-6}{\left(x+2\right)\left(x-2\right)}\) - step9: Factor the expression: \(\frac{\left(x-2\right)\left(x+3\right)}{\left(x+2\right)\left(x-2\right)}\) - step10: Reduce the fraction: \(\frac{x+3}{x+2}\) Let's simplify the given expressions step by step. ### a) Simplifying \( \frac{x^{2}+5 x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5 x+6} \) 1. **Rewrite the division as multiplication**: \[ \frac{x^{2}+5 x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5 x+6} = \frac{x^{2}+5 x+6}{x^{2}-9} \times \frac{x^{2}-5 x+6}{x^{2}-4} \] 2. **Factor the expressions**: - \( x^{2}+5x+6 = (x+2)(x+3) \) - \( x^{2}-9 = (x-3)(x+3) \) - \( x^{2}-4 = (x-2)(x+2) \) - \( x^{2}-5x+6 = (x-2)(x-3) \) 3. **Substituting the factored forms**: \[ \frac{(x+2)(x+3)}{(x-3)(x+3)} \times \frac{(x-2)(x-3)}{(x-2)(x+2)} \] 4. **Cancel out common factors**: - \( (x+2) \) cancels with \( (x+2) \) - \( (x-3) \) cancels with \( (x-3) \) - \( (x+3) \) cancels with \( (x+3) \) 5. **Final result**: \[ 1 \] ### b) Simplifying \( \frac{x}{x-2}-\frac{1}{x+2}+\frac{8}{4-x^{2}} \) 1. **Rewrite \( 4 - x^2 \)**: \[ 4 - x^2 = (2-x)(2+x) \] Thus, we can rewrite the third term: \[ \frac{8}{4-x^2} = \frac{8}{(2-x)(2+x)} \] 2. **Finding a common denominator**: The common denominator for the three fractions is \( (x-2)(x+2)(2-x)(2+x) \). 3. **Rewriting each term with the common denominator**: - First term: \[ \frac{x(2-x)(2+x)}{(x-2)(x+2)(2-x)(2+x)} \] - Second term: \[ \frac{-1(x-2)(2+x)}{(x-2)(x+2)(2-x)(2+x)} \] - Third term: \[ \frac{8(x-2)(x+2)}{(x-2)(x+2)(2-x)(2+x)} \] 4. **Combine the fractions**: \[ \frac{x(2-x)(2+x) - (x-2)(2+x) + 8(x-2)(x+2)}{(x-2)(x+2)(2-x)(2+x)} \] 5. **Simplifying the numerator**: After combining and simplifying, we find: \[ \frac{x+3}{x+2} \] ### Final Results: - a) The simplified expression is \( 1 \). - b) The simplified expression is \( \frac{x+3}{x+2} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression given in part a): Start with: \[ \frac{x^2 + 5x + 6}{x^2 - 9} \div \frac{x^2 - 4}{x^2 - 5x + 6} \] This can be rewritten as: \[ \frac{x^2 + 5x + 6}{x^2 - 9} \times \frac{x^2 - 5x + 6}{x^2 - 4} \] Next, factor each component: - \(x^2 + 5x + 6 = (x + 2)(x + 3)\) - \(x^2 - 9 = (x - 3)(x + 3)\) - \(x^2 - 4 = (x - 2)(x + 2)\) - \(x^2 - 5x + 6 = (x - 2)(x - 3)\) Substituting the factored forms into the expression gives: \[ \frac{(x + 2)(x + 3)}{(x - 3)(x + 3)} \times \frac{(x - 2)(x - 3)}{(x - 2)(x + 2)} \] Cancel out the common factors: - Cancel \( (x + 2) \) in the numerator and denominator. - Cancel \( (x - 2) \). - Cancel \( (x - 3) \). After cancellations, you will have: \[ \frac{1}{(x - 3)} \] So, the simplified expression for part a is: \[ \frac{1}{x - 3} \] --- For part b): We start with: \[ \frac{x}{x-2} - \frac{1}{x+2} + \frac{8}{4-x^2} \] Notice that \(4 - x^2 = (2-x)(2+x)\). Hence, rewrite the last term: \[ \frac{8}{4 - x^2} = \frac{8}{(2-x)(2+x)} = -\frac{8}{(x-2)(2+x)} \] Now, find a common denominator, which is \((x-2)(x+2)(2+x)\) or simply \((x-2)(2+x)\). Rewriting each term with this common denominator, we get: \[ \frac{x(2+x)}{(x-2)(2+x)} - \frac{(x-2)(2+x)}{(x-2)(2+x)} - \frac{8}{(x-2)(2+x)} \] Combine the fractions: \[ \frac{x(2+x) - (x-2)(2+x) - 8}{(x-2)(2+x)} \] This simplifies to: \[(x(2+x) - (2+x)x + 4 + 8)\] which further simplifies to: \[ \frac{4 + 8}{(x-2)(2+x)} = \frac{12}{(x-2)(2+x)} \] Thus, the simplified expression for part b is: \[ \frac{12}{(x - 2)(x + 2)} \]

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy