Activity 10 Simplify the following \( \frac{\text { expressions }}{\text { a) } \frac{x^{2}+5 x+6}{x^{2}-9} \div \frac{x^{2}-4}{x^{2}-5 x+6}} \) b) \( \frac{x}{x-2}-\frac{1}{x+2}+\frac{8}{4-x^{2}} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To simplify the expression given in part a): Start with: \[ \frac{x^2 + 5x + 6}{x^2 - 9} \div \frac{x^2 - 4}{x^2 - 5x + 6} \] This can be rewritten as: \[ \frac{x^2 + 5x + 6}{x^2 - 9} \times \frac{x^2 - 5x + 6}{x^2 - 4} \] Next, factor each component: - \(x^2 + 5x + 6 = (x + 2)(x + 3)\) - \(x^2 - 9 = (x - 3)(x + 3)\) - \(x^2 - 4 = (x - 2)(x + 2)\) - \(x^2 - 5x + 6 = (x - 2)(x - 3)\) Substituting the factored forms into the expression gives: \[ \frac{(x + 2)(x + 3)}{(x - 3)(x + 3)} \times \frac{(x - 2)(x - 3)}{(x - 2)(x + 2)} \] Cancel out the common factors: - Cancel \( (x + 2) \) in the numerator and denominator. - Cancel \( (x - 2) \). - Cancel \( (x - 3) \). After cancellations, you will have: \[ \frac{1}{(x - 3)} \] So, the simplified expression for part a is: \[ \frac{1}{x - 3} \] --- For part b): We start with: \[ \frac{x}{x-2} - \frac{1}{x+2} + \frac{8}{4-x^2} \] Notice that \(4 - x^2 = (2-x)(2+x)\). Hence, rewrite the last term: \[ \frac{8}{4 - x^2} = \frac{8}{(2-x)(2+x)} = -\frac{8}{(x-2)(2+x)} \] Now, find a common denominator, which is \((x-2)(x+2)(2+x)\) or simply \((x-2)(2+x)\). Rewriting each term with this common denominator, we get: \[ \frac{x(2+x)}{(x-2)(2+x)} - \frac{(x-2)(2+x)}{(x-2)(2+x)} - \frac{8}{(x-2)(2+x)} \] Combine the fractions: \[ \frac{x(2+x) - (x-2)(2+x) - 8}{(x-2)(2+x)} \] This simplifies to: \[(x(2+x) - (2+x)x + 4 + 8)\] which further simplifies to: \[ \frac{4 + 8}{(x-2)(2+x)} = \frac{12}{(x-2)(2+x)} \] Thus, the simplified expression for part b is: \[ \frac{12}{(x - 2)(x + 2)} \]