Question
upstudy study bank question image url

Simplify the following \( \begin{array}{lll}\text { (a) } \frac{10^{x} \cdot 25^{x+1}}{5^{5} \cdot 50^{x-1}} & \text { (b) } \frac{6^{n+2} \times 10^{n-2}}{4^{n} \times 15^{n-2}} & \text { (c) } \frac{6^{x} \cdot 9^{x+1} \cdot 2}{27^{x+1} \cdot 2^{x-1}} \\ \text { (d) } \frac{8^{n} .6^{-3} 9^{1-n}}{16^{n-1} \cdot 3^{-\pi}} & \text { (c) } \frac{2^{x+2}-2^{x+3}}{2^{x+1}-2^{x+2}} & \text { (f) } \frac{9^{x}+3^{2+1}}{18^{x} \cdot 2^{1-x}} \\ \text { (g) } \frac{3.2^{x}-2^{x-1}}{2^{1}+2^{x-2}} & \text { (h) } \frac{4^{x}+2^{2 x-1}}{2^{2 x-1}} & \text { (i) } \frac{2.3^{x+2}+3^{x-3}}{5.3^{x-2}}\end{array} \)

Ask by Estrada Daniel. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**(a) Simplify \( \frac{10^{x} \cdot 25^{x+1}}{5^{5} \cdot 50^{x-1}} \):** \[ 2 \times 5^{x-1} \]

Solution

Let's simplify each expression step by step. We'll start with part **(a)**. ### **(a) Simplify \( \frac{10^{x} \cdot 25^{x+1}}{5^{5} \cdot 50^{x-1}} \)** 1. **Express all terms with prime bases:** - \(10 = 2 \times 5\) - \(25 = 5^2\) - \(50 = 2 \times 5^2\) 2. **Rewrite the expression:** \[ \frac{(2 \times 5)^x \cdot (5^2)^{x+1}}{5^5 \cdot (2 \times 5^2)^{x-1}} \] 3. **Simplify the exponents:** \[ \frac{2^x \cdot 5^x \cdot 5^{2(x+1)}}{5^5 \cdot 2^{x-1} \cdot 5^{2(x-1)}} \] \[ \frac{2^x \cdot 5^{x + 2x + 2}}{2^{x-1} \cdot 5^{5 + 2x - 2}} = \frac{2^x \cdot 5^{3x + 2}}{2^{x-1} \cdot 5^{2x + 3}} \] 4. **Combine like terms using the laws of exponents (\(a^m / a^n = a^{m-n}\)):** \[ 2^{x - (x-1)} \cdot 5^{(3x + 2) - (2x + 3)} = 2^{1} \cdot 5^{x - 1} \] \[ = 2 \times 5^{x-1} \] **Final Simplified Form:** \[ 2 \times 5^{x-1} \] --- If you need further simplifications for parts **(b)** through **(i)**, feel free to ask! **Answer:** Problem a Answer After simplifying, the expression is equal to 2 · 5⁽ˣ−¹⁾. Thus, 2 × 5^{x−1}

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's simplify each expression step by step: (a) \[ \frac{10^{x} \cdot 25^{x+1}}{5^{5} \cdot 50^{x-1}} = \frac{(2 \cdot 5)^{x} \cdot (5^2)^{x+1}}{5^{5} \cdot (2 \cdot 5^2)^{x-1}} = \frac{2^{x} \cdot 5^{x} \cdot 5^{2x+2}}{5^{5} \cdot 2^{x-1} \cdot 5^{2(x-1)}} = \frac{2^{x} \cdot 5^{3x+2}}{2^{x-1} \cdot 5^{5}} = 2^{2} \cdot 5^{3x - 3} = 4 \cdot 5^{3x - 3} \] (b) \[ \frac{6^{n+2} \times 10^{n-2}}{4^{n} \times 15^{n-2}} = \frac{(2 \cdot 3)^{n+2} \cdot (2 \cdot 5)^{n-2}}{(2^2)^{n} \cdot (3 \cdot 5)^{n-2}} = \frac{2^{2} \cdot 3^{n+2} \cdot 2^{n-2} \cdot 5^{n-2}}{2^{2n} \cdot 3^{n-2} \cdot 5^{n-2}} = \frac{2^{n} \cdot 3^{n+4}}{2^{2n} \cdot 3^{n-2}} = \frac{3^{n+4}}{2^{n} \cdot 5^{n-2}} \] (c) \[ \frac{6^{x} \cdot 9^{x+1} \cdot 2}{27^{x+1} \cdot 2^{x-1}} = \frac{(2 \cdot 3)^{x} \cdot (3^2)^{x+1} \cdot 2}{(3^3)^{x+1}\cdot 2^{x-1}} = \frac{2^{x+1} \cdot 3^{3x + 2}}{2^{x-1} \cdot 3^{3x + 3}} = 2^2 \cdot 3^{-1} = \frac{4}{3} \] (d) \[ \frac{8^{n} \cdot 6^{-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-\pi}} = \frac{(2^3)^{n} \cdot (2 \cdot 3)^{-3} \cdot (3^2)^{1-n}}{(2^4)^{n-1} \cdot 3^{-\pi}} = \frac{2^{3n} \cdot 3^{-3} \cdot 3^{2 - 2n}}{2^{4n-4} \cdot 3^{\pi}} = \frac{2^{3n - 4n + 4} \cdot 3^{2 - 3 - \pi}}{1} = 2^{-n + 4} \cdot 3^{-1 - \pi} \] (e) \[ \frac{2^{x+2} - 2^{x+3}}{2^{x+1} - 2^{x+2}} = \frac{2^{x+2}(1 - 2)}{2^{x+1}(1 - 2)} = \frac{2^{x+2}(-1)}{2^{x+1}(-1)} = \frac{2^{x+2}}{2^{x+1}} = 2 \] (f) \[ \frac{9^{x}+3^{2+1}}{18^{x} \cdot 2^{1-x}} = \frac{(3^2)^{x}+3^{3}}{(2 \cdot 3^2)^{x} \cdot 2^{1-x}} = \frac{3^{2x}+3^{3}}{2^{x} \cdot

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy