Question
Given \( f(x)=-x^{2}+8 x+14 \), find \( f(-8) \)
Ask by Ward Ramos. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( f(-8) = -114 \)
Solution
To find \( f(-8) \) for the function \( f(x) = -x^{2} + 8x + 14 \), follow these steps:
1. **Substitute \(-8\) for \(x\) in the function:**
\[
f(-8) = -(-8)^{2} + 8(-8) + 14
\]
2. **Calculate each term:**
- \((-8)^{2} = 64\)
- \( -(-8)^{2} = -64 \)
- \( 8(-8) = -64 \)
3. **Combine the results:**
\[
f(-8) = -64 - 64 + 14 = -128 + 14 = -114
\]
**Final Answer:**
\( f(-8) = -114 \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To find \( f(-8) \), we substitute \(-8\) into the function \( f(x) = -x^2 + 8x + 14 \): \[ f(-8) = -(-8)^2 + 8(-8) + 14 \] Calculating each term step-by-step: 1. Calculate \((-8)^2\): \[ (-8)^2 = 64 \] 2. Calculate \(8 \times -8\): \[ 8 \times -8 = -64 \] 3. Now substitute these values back into the equation: \[ f(-8) = -64 - 64 + 14 \] 4. Simplify the expression: \[ f(-8) = -128 + 14 = -114 \] So, \( f(-8) = -114 \).