Question
Determine the following indefinite integral. \( \int \frac{1}{15 y} d y \)
Ask by Barber Daniel. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The integral of \( \frac{1}{15 y} \) with respect to \( y \) is \( \frac{1}{15} \ln |y| + C \), where \( C \) is the constant of integration.
Solution
To evaluate the indefinite integral:
\[
\int \frac{1}{15 y} \, dy
\]
**Step 1: Factor Out the Constant**
The constant \(\frac{1}{15}\) can be factored out of the integral:
\[
\frac{1}{15} \int \frac{1}{y} \, dy
\]
**Step 2: Integrate \(\frac{1}{y}\)**
Recall that the integral of \(\frac{1}{y}\) with respect to \(y\) is the natural logarithm of the absolute value of \(y\):
\[
\int \frac{1}{y} \, dy = \ln |y| + C
\]
where \(C\) is the constant of integration.
**Step 3: Combine the Results**
Multiply the result by the factored-out constant:
\[
\frac{1}{15} \ln |y| + C
\]
**Final Answer:**
\[
\int \frac{1}{15 y} \, dy = \frac{1}{15} \ln |y| + C
\]
where \(C\) is the constant of integration.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
To evaluate the integral \( \int \frac{1}{15 y} d y \), we can factor out the constant \( \frac{1}{15} \): \[ \int \frac{1}{15 y} d y = \frac{1}{15} \int \frac{1}{y} d y \] The integral of \( \frac{1}{y} \) is \( \ln |y| + C \), where \( C \) is the constant of integration. Thus, we have: \[ \frac{1}{15} \int \frac{1}{y} d y = \frac{1}{15} \ln |y| + C \] So, the final answer is: \[ \int \frac{1}{15 y} d y = \frac{1}{15} \ln |y| + C \]