12) \( \frac{2^{x}-5 \cdot \sqrt{2^{x}}+6}{\sqrt{2^{x}}-2} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To simplify the expression \( \frac{2^{x}-5 \cdot \sqrt{2^{x}}+6}{\sqrt{2^{x}}-2} \), let’s first make a substitution to make the expression easier to handle. Set \( y = \sqrt{2^{x}} \). Then \( 2^{x} = y^2 \). The expression becomes: \[ \frac{y^2 - 5y + 6}{y - 2} \] Now, we can factor the numerator: \[ y^2 - 5y + 6 = (y - 2)(y - 3) \] So the expression simplifies to: \[ \frac{(y - 2)(y - 3)}{y - 2} \] As long as \( y \neq 2 \) (which corresponds to \( x \neq 2 \) since \( \sqrt{2^{2}} = 2 \)), we can cancel the \( (y - 2) \): \[ y - 3 \] Substituting back \( y = \sqrt{2^{x}} \): \[ \sqrt{2^{x}} - 3 \] Thus, the final simplified expression is: \[ \sqrt{2^{x}} - 3 \quad \text{for} \quad x \neq 2 \]