Question
upstudy study bank question image url

Give your answer with positive exponent 1.1.1. \( \frac{9 x^{-1} x^{-2} y^{2}}{\left(3 x y^{-1}\right)^{-3}} \) 1.1.2. \( \frac{6\left(x^{2} y\right)\left(x^{-2} y\right)^{-1}}{3 x^{-3} y^{5}} \)

Ask by Cross Gibbs. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1.1.1. \( \frac{243}{y} \) 1.1.2. \( \frac{2 x^{7}}{y^{5}} \)

Solution

Sure, let's simplify each expression and ensure all exponents are positive. --- ### **1.1.1.** \( \frac{9 x^{-1} x^{-2} y^{2}}{\left(3 x y^{-1}\right)^{-3}} \) **Step-by-Step Simplification:** 1. **Combine the exponents in the numerator:** \[ x^{-1} \cdot x^{-2} = x^{-3} \] So, the numerator becomes: \[ 9 x^{-3} y^{2} \] 2. **Simplify the denominator:** \[ \left(3 x y^{-1}\right)^{-3} = \frac{1}{\left(3 x y^{-1}\right)^{3}} = \frac{1}{27 x^{3} y^{-3}} = \frac{y^{3}}{27 x^{3}} \] 3. **Combine the numerator and the simplified denominator:** \[ \frac{9 x^{-3} y^{2}}{\frac{y^{3}}{27 x^{3}}} = 9 x^{-3} y^{2} \times \frac{27 x^{3}}{y^{3}} = 243 x^{0} y^{-1} \] (Since \(9 \times 27 = 243\) and \(x^{-3} \times x^{3} = x^{0} = 1\)) 4. **Express with positive exponents:** \[ 243 y^{-1} = \frac{243}{y} \] **Final Answer:** \[ \frac{243}{y} \] --- ### **1.1.2.** \( \frac{6\left(x^{2} y\right)\left(x^{-2} y\right)^{-1}}{3 x^{-3} y^{5}} \) **Step-by-Step Simplification:** 1. **Simplify the expression inside the numerator:** \[ \left(x^{-2} y\right)^{-1} = x^{2} y^{-1} \] So, the numerator becomes: \[ 6 \cdot x^{2} y \cdot x^{2} y^{-1} = 6 x^{4} y^{0} = 6 x^{4} \] (Since \(y \cdot y^{-1} = y^{0} = 1\)) 2. **Simplify the entire expression:** \[ \frac{6 x^{4}}{3 x^{-3} y^{5}} = \frac{6}{3} \cdot x^{4 - (-3)} \cdot y^{-5} = 2 x^{7} y^{-5} \] (Since \(6 \div 3 = 2\), \(x^{4} \times x^{3} = x^{7}\)) 3. **Express with positive exponents:** \[ 2 x^{7} y^{-5} = \frac{2 x^{7}}{y^{5}} \] **Final Answer:** \[ \frac{2 x^{7}}{y^{5}} \] ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To rewrite the expressions with positive exponents, let's tackle each one step-by-step! 1.1.1. Start with your expression: \[ \frac{9 x^{-1} x^{-2} y^{2}}{\left(3 x y^{-1}\right)^{-3}} \] First, simplify the numerator: \( 9 x^{-1} x^{-2} = 9 x^{-3} y^{2} \). Now, simplify the denominator using the property of negative exponents: \(\left(3 x y^{-1}\right)^{-3} = \frac{1}{(3 x y^{-1})^{3}} = \frac{1}{27 x^{3} y^{-3}} = \frac{y^{3}}{27 x^{3}}\). Now you can rewrite the whole expression: \[ \frac{9 x^{-3} y^{2}}{\frac{y^{3}}{27 x^{3}}} = 9 x^{-3} y^{2} \cdot \frac{27 x^{3}}{y^{3}} = 243 \frac{y^{2}}{y^{3}} = 243 \frac{1}{y} = \frac{243}{y} \] 1.1.2. Now, let's simplify: \[ \frac{6\left(x^{2} y\right)\left(x^{-2} y\right)^{-1}}{3 x^{-3} y^{5}} \] First, simplify the numerator: \(\left(x^{-2} y\right)^{-1} = \frac{1}{x^{-2} y} = \frac{x^{2}}{y}\), thus the numerator becomes: \(6 (x^{2} y) \left(\frac{x^{2}}{y}\right) = 6 x^{4}\). Next, simplify the denominator: \[ 3 x^{-3} y^{5} = \frac{3 y^{5}}{x^{3}} \] Putting it all together: \[ \frac{6 x^{4}}{\frac{3 y^{5}}{x^{3}}} = 6 x^{4} \cdot \frac{x^{3}}{3 y^{5}} = 2 x^{7} y^{-5} \] Finally, this yields: \[ \frac{2 x^{7}}{y^{5}} \] So, the final answers with positive exponents are: 1.1.1: \( \frac{243}{y} \) 1.1.2: \( \frac{2 x^{7}}{y^{5}} \)

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy