Answer
3) \( \frac{4a^{2}+5a+17}{a^{3}-8} \)
4) \( \frac{2}{a^{2}+4a+3} \)
5) \( -\frac{8}{a^{3}-9a^{2}+23a-15} \)
6) \( 1 \)
7) \( 0 \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{1}{a^{2}+3a+2}+\frac{1}{a^{2}+5a+6}\)
- step1: Factor the expression:
\(\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+3\right)\left(a+2\right)}\)
- step2: Reduce fractions to a common denominator:
\(\frac{a+3}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}+\frac{a+1}{\left(a+3\right)\left(a+2\right)\left(a+1\right)}\)
- step3: Rewrite the expression:
\(\frac{a+3}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}+\frac{a+1}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}\)
- step4: Transform the expression:
\(\frac{a+3+a+1}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}\)
- step5: Add the terms:
\(\frac{2a+4}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}\)
- step6: Factor the expression:
\(\frac{2\left(a+2\right)}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}\)
- step7: Reduce the fraction:
\(\frac{2}{\left(a+1\right)\left(a+3\right)}\)
- step8: Multiply the terms:
\(\frac{2}{a^{2}+4a+3}\)
Calculate or simplify the expression \( \frac{2}{a^{2}-4 a+3}-\frac{2}{a^{2}-8 a+15} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2}{a^{2}-4a+3}-\frac{2}{a^{2}-8a+15}\)
- step1: Factor the expression:
\(\frac{2}{\left(a-1\right)\left(a-3\right)}-\frac{2}{\left(a-5\right)\left(a-3\right)}\)
- step2: Reduce fractions to a common denominator:
\(\frac{2\left(a-5\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}-\frac{2\left(a-1\right)}{\left(a-5\right)\left(a-3\right)\left(a-1\right)}\)
- step3: Rewrite the expression:
\(\frac{2\left(a-5\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}-\frac{2\left(a-1\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\)
- step4: Transform the expression:
\(\frac{2\left(a-5\right)-2\left(a-1\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\)
- step5: Multiply the terms:
\(\frac{2a-10-2\left(a-1\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\)
- step6: Multiply the terms:
\(\frac{2a-10-\left(2a-2\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\)
- step7: Subtract the terms:
\(\frac{-8}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\)
- step8: Rewrite the fraction:
\(-\frac{8}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\)
- step9: Calculate:
\(-\frac{8}{a^{3}-9a^{2}+23a-15}\)
Calculate or simplify the expression \( \frac{4}{a-2}+\frac{2 a-3}{a^{2}+2 a+4}-\frac{2 a^{2}-4 a+5}{a^{3}-8} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{4}{a-2}+\frac{2a-3}{a^{2}+2a+4}-\frac{2a^{2}-4a+5}{a^{3}-8}\)
- step1: Factor the expression:
\(\frac{4}{a-2}+\frac{2a-3}{a^{2}+2a+4}-\frac{2a^{2}-4a+5}{\left(a-2\right)\left(a^{2}+2a+4\right)}\)
- step2: Reduce fractions to a common denominator:
\(\frac{4\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}+\frac{\left(2a-3\right)\left(a-2\right)}{\left(a^{2}+2a+4\right)\left(a-2\right)}-\frac{2a^{2}-4a+5}{\left(a-2\right)\left(a^{2}+2a+4\right)}\)
- step3: Rewrite the expression:
\(\frac{4\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}+\frac{\left(2a-3\right)\left(a-2\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2a^{2}-4a+5}{\left(a-2\right)\left(a^{2}+2a+4\right)}\)
- step4: Transform the expression:
\(\frac{4\left(a^{2}+2a+4\right)+\left(2a-3\right)\left(a-2\right)-\left(2a^{2}-4a+5\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\)
- step5: Multiply the terms:
\(\frac{4a^{2}+8a+16+\left(2a-3\right)\left(a-2\right)-\left(2a^{2}-4a+5\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\)
- step6: Multiply the terms:
\(\frac{4a^{2}+8a+16+2a^{2}-7a+6-\left(2a^{2}-4a+5\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\)
- step7: Calculate:
\(\frac{4a^{2}+5a+17}{\left(a-2\right)\left(a^{2}+2a+4\right)}\)
- step8: Simplify the product:
\(\frac{4a^{2}+5a+17}{a^{3}-8}\)
Calculate or simplify the expression \( \frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
- step1: Rewrite the fractions:
\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}-\frac{1}{\left(-c+a\right)\left(c-b\right)}\)
- step2: Reduce fractions to a common denominator:
\(\frac{-b+c}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}-\frac{a-b}{\left(-c+a\right)\left(c-b\right)\left(a-b\right)}\)
- step3: Rewrite the expression:
\(\frac{-b+c}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}\)
- step4: Transform the expression:
\(\frac{-b+c+a-c-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}\)
- step5: Calculate:
\(\frac{0}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}\)
- step6: Calculate:
\(0\)
Calculate or simplify the expression \( \frac{a^{2}-(b-c)^{2}}{(a+c)^{2}-b^{2}}+\frac{b^{2}-(a-c)^{2}}{(a+b)^{2}-c^{2}}+\frac{c^{2}-(a-b)^{2}}{(b+c)^{2}-a^{2}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{a^{2}-\left(b-c\right)^{2}}{\left(a+c\right)^{2}-b^{2}}+\frac{b^{2}-\left(a-c\right)^{2}}{\left(a+b\right)^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\)
- step1: Expand the expression:
\(\frac{a^{2}-b^{2}+2bc-c^{2}}{\left(a+c\right)^{2}-b^{2}}+\frac{b^{2}-\left(a-c\right)^{2}}{\left(a+b\right)^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\)
- step2: Expand the expression:
\(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-\left(a-c\right)^{2}}{\left(a+b\right)^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\)
- step3: Expand the expression:
\(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-a^{2}+2ac-c^{2}}{\left(a+b\right)^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\)
- step4: Expand the expression:
\(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-a^{2}+2ac-c^{2}}{a^{2}+2ab+b^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\)
- step5: Expand the expression:
\(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-a^{2}+2ac-c^{2}}{a^{2}+2ab+b^{2}-c^{2}}+\frac{c^{2}-a^{2}+2ab-b^{2}}{\left(b+c\right)^{2}-a^{2}}\)
- step6: Expand the expression:
\(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-a^{2}+2ac-c^{2}}{a^{2}+2ab+b^{2}-c^{2}}+\frac{c^{2}-a^{2}+2ab-b^{2}}{b^{2}+2bc+c^{2}-a^{2}}\)
- step7: Divide the terms:
\(\frac{a+b-c}{a+c+b}+\frac{b^{2}-a^{2}+2ac-c^{2}}{a^{2}+2ab+b^{2}-c^{2}}+\frac{c^{2}-a^{2}+2ab-b^{2}}{b^{2}+2bc+c^{2}-a^{2}}\)
- step8: Divide the terms:
\(\frac{a+b-c}{a+c+b}+\frac{b-a+c}{a+b+c}+\frac{c^{2}-a^{2}+2ab-b^{2}}{b^{2}+2bc+c^{2}-a^{2}}\)
- step9: Divide the terms:
\(\frac{a+b-c}{a+c+b}+\frac{b-a+c}{a+b+c}+\frac{c+a-b}{b+c+a}\)
- step10: Rewrite the expression:
\(\frac{a+b-c}{a+c+b}+\frac{b-a+c}{a+c+b}+\frac{c+a-b}{a+c+b}\)
- step11: Transform the expression:
\(\frac{a+b-c+b-a+c+c+a-b}{a+c+b}\)
- step12: Calculate:
\(\frac{a+b+c}{a+c+b}\)
- step13: Reduce the fraction:
\(1\)
Keling, har bir ifodani alohida ko'rib chiqamiz va natijalarni taqdim etamiz:
### 3)
\[
\frac{4}{a-2}+\frac{2 a-3}{a^{2}+2 a+4}-\frac{2 a^{2}-4 a+5}{a^{3}-8}
\]
Natija:
\[
\frac{4a^{2}+5a+17}{a^{3}-8}
\]
### 4)
\[
\frac{1}{a^{2}+3 a+2}+\frac{1}{a^{2}+5 a+6}
\]
Natija:
\[
\frac{2}{a^{2}+4a+3}
\]
### 5)
\[
\frac{2}{a^{2}-4 a+3}-\frac{2}{a^{2}-8 a+15}
\]
Natija:
\[
-\frac{8}{a^{3}-9a^{2}+23a-15}
\]
### 6)
\[
\frac{a^{2}-(b-c)^{2}}{(a+c)^{2}-b^{2}}+\frac{b^{2}-(a-c)^{2}}{(a+b)^{2}-c^{2}}+\frac{c^{2}-(a-b)^{2}}{(b+c)^{2}-a^{2}}
\]
Natija:
\[
1
\]
### 7)
\[
\frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)}
\]
Natija:
\[
0
\]
Agar sizda qo'shimcha savollar bo'lsa yoki boshqa masalalar bo'yicha yordam kerak bo'lsa, iltimos, xabar bering!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution