Question
upstudy study bank question image url

3) \( \frac{4}{a-2}+\frac{2 a-3}{a^{2}+2 a+4}-\frac{2 a^{2}-4 a+5}{a^{3}-8} \) 4) \( \frac{1}{a^{2}+3 a+2}+\frac{1}{a^{2}+5 a+6} \) 5) \( \frac{2}{a^{2}-4 a+3}-\frac{2}{a^{2}-8 a+15} \) 6) \( \frac{a^{2}-(b-c)^{2}}{(a+c)^{2}-b^{2}}+\frac{b^{2}-(a-c)^{2}}{(a+b)^{2}-c^{2}}+\frac{c^{2}-(a-b)^{2}}{(b+c)^{2}-a^{2}} \) 7) \( \frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)} \)

Ask by Mills Hanson. in Uzbekistan
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

3) \( \frac{4a^{2}+5a+17}{a^{3}-8} \) 4) \( \frac{2}{a^{2}+4a+3} \) 5) \( -\frac{8}{a^{3}-9a^{2}+23a-15} \) 6) \( 1 \) 7) \( 0 \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{1}{a^{2}+3a+2}+\frac{1}{a^{2}+5a+6}\) - step1: Factor the expression: \(\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+3\right)\left(a+2\right)}\) - step2: Reduce fractions to a common denominator: \(\frac{a+3}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}+\frac{a+1}{\left(a+3\right)\left(a+2\right)\left(a+1\right)}\) - step3: Rewrite the expression: \(\frac{a+3}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}+\frac{a+1}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}\) - step4: Transform the expression: \(\frac{a+3+a+1}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}\) - step5: Add the terms: \(\frac{2a+4}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}\) - step6: Factor the expression: \(\frac{2\left(a+2\right)}{\left(a+1\right)\left(a+2\right)\left(a+3\right)}\) - step7: Reduce the fraction: \(\frac{2}{\left(a+1\right)\left(a+3\right)}\) - step8: Multiply the terms: \(\frac{2}{a^{2}+4a+3}\) Calculate or simplify the expression \( \frac{2}{a^{2}-4 a+3}-\frac{2}{a^{2}-8 a+15} \). Simplify the expression by following steps: - step0: Solution: \(\frac{2}{a^{2}-4a+3}-\frac{2}{a^{2}-8a+15}\) - step1: Factor the expression: \(\frac{2}{\left(a-1\right)\left(a-3\right)}-\frac{2}{\left(a-5\right)\left(a-3\right)}\) - step2: Reduce fractions to a common denominator: \(\frac{2\left(a-5\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}-\frac{2\left(a-1\right)}{\left(a-5\right)\left(a-3\right)\left(a-1\right)}\) - step3: Rewrite the expression: \(\frac{2\left(a-5\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}-\frac{2\left(a-1\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\) - step4: Transform the expression: \(\frac{2\left(a-5\right)-2\left(a-1\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\) - step5: Multiply the terms: \(\frac{2a-10-2\left(a-1\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\) - step6: Multiply the terms: \(\frac{2a-10-\left(2a-2\right)}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\) - step7: Subtract the terms: \(\frac{-8}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\) - step8: Rewrite the fraction: \(-\frac{8}{\left(a-1\right)\left(a-3\right)\left(a-5\right)}\) - step9: Calculate: \(-\frac{8}{a^{3}-9a^{2}+23a-15}\) Calculate or simplify the expression \( \frac{4}{a-2}+\frac{2 a-3}{a^{2}+2 a+4}-\frac{2 a^{2}-4 a+5}{a^{3}-8} \). Simplify the expression by following steps: - step0: Solution: \(\frac{4}{a-2}+\frac{2a-3}{a^{2}+2a+4}-\frac{2a^{2}-4a+5}{a^{3}-8}\) - step1: Factor the expression: \(\frac{4}{a-2}+\frac{2a-3}{a^{2}+2a+4}-\frac{2a^{2}-4a+5}{\left(a-2\right)\left(a^{2}+2a+4\right)}\) - step2: Reduce fractions to a common denominator: \(\frac{4\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}+\frac{\left(2a-3\right)\left(a-2\right)}{\left(a^{2}+2a+4\right)\left(a-2\right)}-\frac{2a^{2}-4a+5}{\left(a-2\right)\left(a^{2}+2a+4\right)}\) - step3: Rewrite the expression: \(\frac{4\left(a^{2}+2a+4\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}+\frac{\left(2a-3\right)\left(a-2\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}-\frac{2a^{2}-4a+5}{\left(a-2\right)\left(a^{2}+2a+4\right)}\) - step4: Transform the expression: \(\frac{4\left(a^{2}+2a+4\right)+\left(2a-3\right)\left(a-2\right)-\left(2a^{2}-4a+5\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\) - step5: Multiply the terms: \(\frac{4a^{2}+8a+16+\left(2a-3\right)\left(a-2\right)-\left(2a^{2}-4a+5\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\) - step6: Multiply the terms: \(\frac{4a^{2}+8a+16+2a^{2}-7a+6-\left(2a^{2}-4a+5\right)}{\left(a-2\right)\left(a^{2}+2a+4\right)}\) - step7: Calculate: \(\frac{4a^{2}+5a+17}{\left(a-2\right)\left(a^{2}+2a+4\right)}\) - step8: Simplify the product: \(\frac{4a^{2}+5a+17}{a^{3}-8}\) Calculate or simplify the expression \( \frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)} \). Simplify the expression by following steps: - step0: Solution: \(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\) - step1: Rewrite the fractions: \(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}-\frac{1}{\left(-c+a\right)\left(c-b\right)}\) - step2: Reduce fractions to a common denominator: \(\frac{-b+c}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}-\frac{a-b}{\left(-c+a\right)\left(c-b\right)\left(a-b\right)}\) - step3: Rewrite the expression: \(\frac{-b+c}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}\) - step4: Transform the expression: \(\frac{-b+c+a-c-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}\) - step5: Calculate: \(\frac{0}{\left(a-b\right)\left(a-c\right)\left(-b+c\right)}\) - step6: Calculate: \(0\) Calculate or simplify the expression \( \frac{a^{2}-(b-c)^{2}}{(a+c)^{2}-b^{2}}+\frac{b^{2}-(a-c)^{2}}{(a+b)^{2}-c^{2}}+\frac{c^{2}-(a-b)^{2}}{(b+c)^{2}-a^{2}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{a^{2}-\left(b-c\right)^{2}}{\left(a+c\right)^{2}-b^{2}}+\frac{b^{2}-\left(a-c\right)^{2}}{\left(a+b\right)^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\) - step1: Expand the expression: \(\frac{a^{2}-b^{2}+2bc-c^{2}}{\left(a+c\right)^{2}-b^{2}}+\frac{b^{2}-\left(a-c\right)^{2}}{\left(a+b\right)^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\) - step2: Expand the expression: \(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-\left(a-c\right)^{2}}{\left(a+b\right)^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\) - step3: Expand the expression: \(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-a^{2}+2ac-c^{2}}{\left(a+b\right)^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\) - step4: Expand the expression: \(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-a^{2}+2ac-c^{2}}{a^{2}+2ab+b^{2}-c^{2}}+\frac{c^{2}-\left(a-b\right)^{2}}{\left(b+c\right)^{2}-a^{2}}\) - step5: Expand the expression: \(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-a^{2}+2ac-c^{2}}{a^{2}+2ab+b^{2}-c^{2}}+\frac{c^{2}-a^{2}+2ab-b^{2}}{\left(b+c\right)^{2}-a^{2}}\) - step6: Expand the expression: \(\frac{a^{2}-b^{2}+2bc-c^{2}}{a^{2}+2ac+c^{2}-b^{2}}+\frac{b^{2}-a^{2}+2ac-c^{2}}{a^{2}+2ab+b^{2}-c^{2}}+\frac{c^{2}-a^{2}+2ab-b^{2}}{b^{2}+2bc+c^{2}-a^{2}}\) - step7: Divide the terms: \(\frac{a+b-c}{a+c+b}+\frac{b^{2}-a^{2}+2ac-c^{2}}{a^{2}+2ab+b^{2}-c^{2}}+\frac{c^{2}-a^{2}+2ab-b^{2}}{b^{2}+2bc+c^{2}-a^{2}}\) - step8: Divide the terms: \(\frac{a+b-c}{a+c+b}+\frac{b-a+c}{a+b+c}+\frac{c^{2}-a^{2}+2ab-b^{2}}{b^{2}+2bc+c^{2}-a^{2}}\) - step9: Divide the terms: \(\frac{a+b-c}{a+c+b}+\frac{b-a+c}{a+b+c}+\frac{c+a-b}{b+c+a}\) - step10: Rewrite the expression: \(\frac{a+b-c}{a+c+b}+\frac{b-a+c}{a+c+b}+\frac{c+a-b}{a+c+b}\) - step11: Transform the expression: \(\frac{a+b-c+b-a+c+c+a-b}{a+c+b}\) - step12: Calculate: \(\frac{a+b+c}{a+c+b}\) - step13: Reduce the fraction: \(1\) Keling, har bir ifodani alohida ko'rib chiqamiz va natijalarni taqdim etamiz: ### 3) \[ \frac{4}{a-2}+\frac{2 a-3}{a^{2}+2 a+4}-\frac{2 a^{2}-4 a+5}{a^{3}-8} \] Natija: \[ \frac{4a^{2}+5a+17}{a^{3}-8} \] ### 4) \[ \frac{1}{a^{2}+3 a+2}+\frac{1}{a^{2}+5 a+6} \] Natija: \[ \frac{2}{a^{2}+4a+3} \] ### 5) \[ \frac{2}{a^{2}-4 a+3}-\frac{2}{a^{2}-8 a+15} \] Natija: \[ -\frac{8}{a^{3}-9a^{2}+23a-15} \] ### 6) \[ \frac{a^{2}-(b-c)^{2}}{(a+c)^{2}-b^{2}}+\frac{b^{2}-(a-c)^{2}}{(a+b)^{2}-c^{2}}+\frac{c^{2}-(a-b)^{2}}{(b+c)^{2}-a^{2}} \] Natija: \[ 1 \] ### 7) \[ \frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)} \] Natija: \[ 0 \] Agar sizda qo'shimcha savollar bo'lsa yoki boshqa masalalar bo'yicha yordam kerak bo'lsa, iltimos, xabar bering!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

The expression \( \frac{4}{a-2}+\frac{2 a-3}{a^{2}+2 a+4}-\frac{2 a^{2}-4 a+5}{a^{3}-8} \) can be simplified by first factoring the denominators where possible and finding a common denominator. Notably, \( a^3 - 8 \) factors to \( (a-2)(a^2 + 2a + 4) \), which aligns with the other terms. After combining the fractions and simplifying, you'll find a neater expression that reveals much about the relationship between the variable and the constants involved. When tackling the problem \( \frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)} \), consider using symmetry. Notice that each term looks similar; you can apply a common approach by setting a common denominator. This can be especially useful in recognizing patterns that emerge from cycling through the variables, leading to some delightful cancellations! Happy calculating!

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy