nsider the curve \( f(x)=\frac{1}{6} x^{3}+\frac{1}{2 x} \) for \( 1 \leq x \leq 3 \). Find the exact arc length of the curve.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find the arc length of the curve \( f(x) = \frac{1}{6} x^3 + \frac{1}{2x} \) from \( x = 1 \) to \( x = 3 \), we use the arc length formula: \[ L = \int_a^b \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] First, we need to calculate \( \frac{dy}{dx} \): 1. Differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \frac{1}{6} x^3 + \frac{1}{2x} \right) = \frac{1}{2} x^2 - \frac{1}{2x^2} \] 2. Now, simplify \( f'(x) \): \[ f'(x) = \frac{x^4 - 1}{2x^2} \] 3. Next, compute \( \left( f'(x) \right)^2 \): \[ \left( f'(x) \right)^2 = \left( \frac{x^4 - 1}{2x^2} \right)^2 = \frac{(x^4 - 1)^2}{4x^4} \] 4. Substitute \( \left( f'(x) \right)^2 \) into the arc length formula: \[ L = \int_1^3 \sqrt{1 + \frac{(x^4 - 1)^2}{4x^4}} \, dx \] 5. Simplify the term under the square root: \[ 1 + \frac{(x^4 - 1)^2}{4x^4} = \frac{4x^4 + (x^4 - 1)^2}{4x^4} = \frac{4x^4 + x^8 - 2x^4 + 1}{4x^4} = \frac{x^8 + 2x^4 + 1}{4x^4} = \frac{(x^4 + 1)^2}{4x^4} \] Therefore, \[ \sqrt{1 + \left( f'(x) \right)^2} = \sqrt{\frac{(x^4 + 1)^2}{4x^4}} = \frac{x^4 + 1}{2x^2} \] 6. Now we can rewrite the arc length: \[ L = \int_1^3 \frac{x^4 + 1}{2x^2} \, dx = \frac{1}{2} \int_1^3 (x^2 + \frac{1}{x^2}) \, dx \] 7. Now, split the integral: \[ L = \frac{1}{2} \left( \int_1^3 x^2 \, dx + \int_1^3 \frac{1}{x^2} \, dx \right) \] 8. Calculate \( \int_1^3 x^2 \, dx \): \[ \int_1^3 x^2 \, dx = \left[ \frac{x^3}{3} \right]_1^3 = \frac{27}{3} - \frac{1}{3} = \frac{26}{3} \] 9. Calculate \( \int_1^3 \frac{1}{x^2} \, dx \): \[ \int_1^3 \frac{1}{x^2} \, dx = \left[ -\frac{1}{x} \right]_1^3 = -\frac{1}{3} + 1 = \frac{2}{3} \] 10. Combine the results: \[ L = \frac{1}{2} \left( \frac{26}{3} + \frac{2}{3} \right) = \frac{1}{2} \cdot \frac{28}{3} = \frac{14}{3} \] Thus, the exact arc length of the curve from \( x = 1 \) to \( x = 3 \) is \[ \boxed{\frac{14}{3}}. \]