Question
upstudy study bank question image url

nsider the curve \( f(x)=\frac{1}{6} x^{3}+\frac{1}{2 x} \) for \( 1 \leq x \leq 3 \). Find the exact arc length of the curve.

Ask by Floyd Weber. in the United States
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The exact arc length of the curve is \( \frac{14}{3} \) units.

Solution

To find the exact arc length of the curve \( f(x) = \frac{1}{6}x^3 + \frac{1}{2x} \) for \( 1 \leq x \leq 3 \), we'll use the arc length formula for a function \( f(x) \): \[ \text{Arc Length} = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} \, dx \] ### Step 1: Compute the First Derivative \( f'(x) \) Given: \[ f(x) = \frac{1}{6}x^3 + \frac{1}{2x} \] Differentiate with respect to \( x \): \[ f'(x) = \frac{1}{6} \cdot 3x^2 - \frac{1}{2} \cdot x^{-2} = \frac{1}{2}x^2 - \frac{1}{2x^2} \] ### Step 2: Compute \( \left(f'(x)\right)^2 \) \[ \left(f'(x)\right)^2 = \left(\frac{1}{2}x^2 - \frac{1}{2x^2}\right)^2 = \frac{(x^4 - 2 + \frac{1}{x^4})}{4} \] ### Step 3: Set Up the Arc Length Integral \[ \sqrt{1 + \left(f'(x)\right)^2} = \sqrt{1 + \frac{x^4 - 2 + \frac{1}{x^4}}{4}} = \sqrt{\frac{x^4 + 2 + \frac{1}{x^4}}{4}} = \frac{x^2 + \frac{1}{x^2}}{2} \] Thus, the arc length integral becomes: \[ \text{Arc Length} = \int_{1}^{3} \frac{x^2 + \frac{1}{x^2}}{2} \, dx = \frac{1}{2} \left( \int_{1}^{3} x^2 \, dx + \int_{1}^{3} \frac{1}{x^2} \, dx \right) \] ### Step 4: Evaluate the Integrals Compute \( \int x^2 \, dx \) from 1 to 3: \[ \int_{1}^{3} x^2 \, dx = \left[\frac{x^3}{3}\right]_{1}^{3} = \frac{27}{3} - \frac{1}{3} = \frac{26}{3} \] Compute \( \int \frac{1}{x^2} \, dx \) from 1 to 3: \[ \int_{1}^{3} \frac{1}{x^2} \, dx = \left[-\frac{1}{x}\right]_{1}^{3} = -\frac{1}{3} + 1 = \frac{2}{3} \] ### Step 5: Combine the Results \[ \text{Arc Length} = \frac{1}{2} \left( \frac{26}{3} + \frac{2}{3} \right) = \frac{1}{2} \cdot \frac{28}{3} = \frac{14}{3} \] **Final Answer:** The exact arc length is 14⁄3 units.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the arc length of the curve \( f(x) = \frac{1}{6} x^3 + \frac{1}{2x} \) from \( x = 1 \) to \( x = 3 \), we use the arc length formula: \[ L = \int_a^b \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] First, we need to calculate \( \frac{dy}{dx} \): 1. Differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \frac{1}{6} x^3 + \frac{1}{2x} \right) = \frac{1}{2} x^2 - \frac{1}{2x^2} \] 2. Now, simplify \( f'(x) \): \[ f'(x) = \frac{x^4 - 1}{2x^2} \] 3. Next, compute \( \left( f'(x) \right)^2 \): \[ \left( f'(x) \right)^2 = \left( \frac{x^4 - 1}{2x^2} \right)^2 = \frac{(x^4 - 1)^2}{4x^4} \] 4. Substitute \( \left( f'(x) \right)^2 \) into the arc length formula: \[ L = \int_1^3 \sqrt{1 + \frac{(x^4 - 1)^2}{4x^4}} \, dx \] 5. Simplify the term under the square root: \[ 1 + \frac{(x^4 - 1)^2}{4x^4} = \frac{4x^4 + (x^4 - 1)^2}{4x^4} = \frac{4x^4 + x^8 - 2x^4 + 1}{4x^4} = \frac{x^8 + 2x^4 + 1}{4x^4} = \frac{(x^4 + 1)^2}{4x^4} \] Therefore, \[ \sqrt{1 + \left( f'(x) \right)^2} = \sqrt{\frac{(x^4 + 1)^2}{4x^4}} = \frac{x^4 + 1}{2x^2} \] 6. Now we can rewrite the arc length: \[ L = \int_1^3 \frac{x^4 + 1}{2x^2} \, dx = \frac{1}{2} \int_1^3 (x^2 + \frac{1}{x^2}) \, dx \] 7. Now, split the integral: \[ L = \frac{1}{2} \left( \int_1^3 x^2 \, dx + \int_1^3 \frac{1}{x^2} \, dx \right) \] 8. Calculate \( \int_1^3 x^2 \, dx \): \[ \int_1^3 x^2 \, dx = \left[ \frac{x^3}{3} \right]_1^3 = \frac{27}{3} - \frac{1}{3} = \frac{26}{3} \] 9. Calculate \( \int_1^3 \frac{1}{x^2} \, dx \): \[ \int_1^3 \frac{1}{x^2} \, dx = \left[ -\frac{1}{x} \right]_1^3 = -\frac{1}{3} + 1 = \frac{2}{3} \] 10. Combine the results: \[ L = \frac{1}{2} \left( \frac{26}{3} + \frac{2}{3} \right) = \frac{1}{2} \cdot \frac{28}{3} = \frac{14}{3} \] Thus, the exact arc length of the curve from \( x = 1 \) to \( x = 3 \) is \[ \boxed{\frac{14}{3}}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy