\( \left. \begin{array} { l } { \frac { ( p ^ { 3 } ) ^ { x - 1 } \cdot p ^ { - 5 } } { \sqrt[ x ] { p ^ { 3 } } } = 1 } \\ { ( x \in N ) } \end{array} \right. \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To solve the equation, we start by simplifying the left side. The expression can be rewritten using properties of exponents. The term \((p^3)^{x-1}\) becomes \(p^{3(x-1)}\), so the whole expression transforms into: \[ \frac{p^{3(x-1)} \cdot p^{-5}}{\sqrt[x]{p^3}} = 1. \] Now, let’s express \(\sqrt[x]{p^3}\) using exponents, which gives us \(p^{3/x}\). So the equation becomes: \[ \frac{p^{3(x-1) - 5}}{p^{3/x}} = 1. \] By combining the exponents in the numerator, we have: \[ p^{3(x-1) - 5 - \frac{3}{x}} = 1. \] Since \(p^0 = 1\), we can set the exponent equal to zero: \[ 3(x - 1) - 5 - \frac{3}{x} = 0. \] This simplifies to: \[ 3x - 3 - 5 - \frac{3}{x} = 0 \quad \Rightarrow \quad 3x - 8 - \frac{3}{x} = 0. \] Multiplying through by \(x\) to eliminate the fraction yields: \[ 3x^2 - 8x - 3 = 0. \] Now we can solve this quadratic using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 3\), \(b = -8\), and \(c = -3\). Substituting: \[ x = \frac{8 \pm \sqrt{(-8)^2 - 4 \cdot 3 \cdot (-3)}}{2 \cdot 3} = \frac{8 \pm \sqrt{64 + 36}}{6} = \frac{8 \pm \sqrt{100}}{6} = \frac{8 \pm 10}{6}. \] This gives us two potential solutions: 1. \(x = \frac{18}{6} = 3\) 2. \(x = \frac{-2}{6} = -\frac{1}{3}\) (not a natural number) The only valid solution \(x\) in natural numbers is: \[ \boxed{3}. \]