Question
upstudy study bank question image url

Im and Difference Formulas Question 29, 5.2.61 Patacts HW Score: \( 90.3 \%, 34,67 \) of 30 points Points: 0.67 of 1 Find the ecact value of the expressions \( \cos (\alpha+\beta) . \sin (\alpha+\beta) \) and \( \tan (\alpha+\beta) \) under the following conditions: \( \cos (\alpha)=\frac{24}{25}, a \) les in quadiant \( V \), and \( \sin (\beta)=\frac{-2}{5}, \beta \) lecs in quadiant III. \( a \cdot \cos (\alpha+\beta)=\frac{-24 \sqrt{21}-14}{125} \) (Simplity your answer Type an exad answer, using radicals as needed. Rationalke all denominators Use integers or fractions for any numbers in the eppession) \( b \sin (a+\beta)=\frac{7 \sqrt{21}-48}{125} \) (Simplity your answer. Type an exad answer, using radicals as needed. Rationalize all denominators. Use integers or flactions for any numbers in the expression) c. \( \tan (\alpha+\beta)= \) \( \square \) (Simplify your answer. Type an evad answer, using radicals as needed. Ratonalke all denominators. Use integers or flactions for any numbers in the expression)

Ask by Maxwell Wright. in the United States
Feb 02,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \tan(\alpha + \beta) = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \)

Solution

To solve the problem, we need to find the exact values of \( \cos(\alpha + \beta) \), \( \sin(\alpha + \beta) \), and \( \tan(\alpha + \beta) \) using the given conditions. ### Step 1: Determine \( \sin(\alpha) \) and \( \cos(\beta) \) 1. **For \( \alpha \)**: - We know \( \cos(\alpha) = \frac{24}{25} \). - Since \( \alpha \) is in quadrant V, \( \sin(\alpha) \) will be negative. - Using the Pythagorean identity: \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \] \[ \sin^2(\alpha) + \left(\frac{24}{25}\right)^2 = 1 \] \[ \sin^2(\alpha) + \frac{576}{625} = 1 \] \[ \sin^2(\alpha) = 1 - \frac{576}{625} = \frac{49}{625} \] \[ \sin(\alpha) = -\frac{7}{25} \quad (\text{since } \alpha \text{ is in quadrant V}) \] 2. **For \( \beta \)**: - We know \( \sin(\beta) = -\frac{2}{5} \). - Since \( \beta \) is in quadrant III, \( \cos(\beta) \) will also be negative. - Using the Pythagorean identity: \[ \sin^2(\beta) + \cos^2(\beta) = 1 \] \[ \left(-\frac{2}{5}\right)^2 + \cos^2(\beta) = 1 \] \[ \frac{4}{25} + \cos^2(\beta) = 1 \] \[ \cos^2(\beta) = 1 - \frac{4}{25} = \frac{21}{25} \] \[ \cos(\beta) = -\frac{\sqrt{21}}{5} \quad (\text{since } \beta \text{ is in quadrant III}) \] ### Step 2: Use the Sum Formulas Now we can use the sum formulas for cosine and sine: 1. **Cosine of the sum**: \[ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Substituting the values: \[ \cos(\alpha + \beta) = \left(\frac{24}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) - \left(-\frac{7}{25}\right)\left(-\frac{2}{5}\right) \] \[ = -\frac{24\sqrt{21}}{125} - \frac{14}{125} \] \[ = \frac{-24\sqrt{21} - 14}{125} \] 2. **Sine of the sum**: \[ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] Substituting the values: \[ \sin(\alpha + \beta) = \left(-\frac{7}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) + \left(\frac{24}{25}\right)\left(-\frac{2}{5}\right) \] \[ = \frac{7\sqrt{21}}{125} - \frac{48}{125} \] \[ = \frac{7\sqrt{21} - 48}{125} \] ### Step 3: Calculate Tangent of the Sum Finally, we can find \( \tan(\alpha + \beta) \): \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] Substituting the values: \[ \tan(\alpha + \beta) = \frac{\frac{7\sqrt{21} - 48}{125}}{\frac{-24\sqrt{21} - 14}{125}} = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \] ### Final Answers - \( a \cdot \cos(\alpha + \beta) = \frac{-24\sqrt{21} - 14}{125} \) - \( b \cdot \sin(\alpha + \beta) = \frac{7\sqrt{21} - 48}{125} \) - \( \tan(\alpha + \beta) = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \) This is the simplified form of the tangent.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find \( \cos(\alpha + \beta) \) and \( \sin(\alpha + \beta) \), we first need to determine the sine and cosine of \( \alpha \) and \( \beta \) using the provided information. For \( \alpha \) in quadrant IV, we know \( \cos(\alpha) = \frac{24}{25} \). We can find \( \sin(\alpha) \): \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \quad \Rightarrow \quad \sin^2(\alpha) + \left(\frac{24}{25}\right)^2 = 1 \] \[ \sin^2(\alpha) = 1 - \frac{576}{625} = \frac{49}{625} \quad \Rightarrow \quad \sin(\alpha) = -\frac{7}{25} \quad (\text{since } \alpha \text{ is in quadrant IV}) \] For \( \beta \) in quadrant III, we have \( \sin(\beta) = -\frac{2}{5} \) and can determine \( \cos(\beta) \): \[ \sin^2(\beta) + \cos^2(\beta) = 1 \quad \Rightarrow \quad \left(-\frac{2}{5}\right)^2 + \cos^2(\beta) = 1 \] \[ \frac{4}{25} + \cos^2(\beta) = 1 \quad \Rightarrow \quad \cos^2(\beta) = \frac{21}{25} \quad \Rightarrow \quad \cos(\beta) = -\frac{\sqrt{21}}{5} \] Now we can use the angle addition formulas: \[ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Plugging in the values: \[ \cos(\alpha + \beta) = \frac{24}{25} \left(-\frac{\sqrt{21}}{5}\right) - \left(-\frac{7}{25}\right)\left(-\frac{2}{5}\right) \] \[ = -\frac{24\sqrt{21}}{125} - \frac{14}{125} = \frac{-24\sqrt{21}-14}{125} \] For \( \sin(\alpha + \beta) \): \[ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] \[ = \left(-\frac{7}{25}\right) \left(-\frac{\sqrt{21}}{5}\right) + \frac{24}{25}\left(-\frac{2}{5}\right) \] \[ = \frac{7\sqrt{21}}{125} - \frac{48}{125} = \frac{7\sqrt{21}-48}{125} \] Lastly, to find \( \tan(\alpha + \beta) \), we can use: \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] Substituting the previous results: \[ \tan(\alpha + \beta) = \frac{\frac{7\sqrt{21} - 48}{125}}{\frac{-24\sqrt{21} - 14}{125}} = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} = \frac{(7\sqrt{21} - 48)(-1)}{24\sqrt{21} + 14} \] \[ = \frac{48 - 7\sqrt{21}}{24\sqrt{21} + 14} \] That gives you the exact values you are looking for! Enjoy playing with those identities!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy