Im and Difference Formulas Question 29, 5.2.61 Patacts HW Score: \( 90.3 \%, 34,67 \) of 30 points Points: 0.67 of 1 Find the ecact value of the expressions \( \cos (\alpha+\beta) . \sin (\alpha+\beta) \) and \( \tan (\alpha+\beta) \) under the following conditions: \( \cos (\alpha)=\frac{24}{25}, a \) les in quadiant \( V \), and \( \sin (\beta)=\frac{-2}{5}, \beta \) lecs in quadiant III. \( a \cdot \cos (\alpha+\beta)=\frac{-24 \sqrt{21}-14}{125} \) (Simplity your answer Type an exad answer, using radicals as needed. Rationalke all denominators Use integers or fractions for any numbers in the eppession) \( b \sin (a+\beta)=\frac{7 \sqrt{21}-48}{125} \) (Simplity your answer. Type an exad answer, using radicals as needed. Rationalize all denominators. Use integers or flactions for any numbers in the expression) c. \( \tan (\alpha+\beta)= \) \( \square \) (Simplify your answer. Type an evad answer, using radicals as needed. Ratonalke all denominators. Use integers or flactions for any numbers in the expression)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( \cos(\alpha + \beta) \) and \( \sin(\alpha + \beta) \), we first need to determine the sine and cosine of \( \alpha \) and \( \beta \) using the provided information. For \( \alpha \) in quadrant IV, we know \( \cos(\alpha) = \frac{24}{25} \). We can find \( \sin(\alpha) \): \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \quad \Rightarrow \quad \sin^2(\alpha) + \left(\frac{24}{25}\right)^2 = 1 \] \[ \sin^2(\alpha) = 1 - \frac{576}{625} = \frac{49}{625} \quad \Rightarrow \quad \sin(\alpha) = -\frac{7}{25} \quad (\text{since } \alpha \text{ is in quadrant IV}) \] For \( \beta \) in quadrant III, we have \( \sin(\beta) = -\frac{2}{5} \) and can determine \( \cos(\beta) \): \[ \sin^2(\beta) + \cos^2(\beta) = 1 \quad \Rightarrow \quad \left(-\frac{2}{5}\right)^2 + \cos^2(\beta) = 1 \] \[ \frac{4}{25} + \cos^2(\beta) = 1 \quad \Rightarrow \quad \cos^2(\beta) = \frac{21}{25} \quad \Rightarrow \quad \cos(\beta) = -\frac{\sqrt{21}}{5} \] Now we can use the angle addition formulas: \[ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Plugging in the values: \[ \cos(\alpha + \beta) = \frac{24}{25} \left(-\frac{\sqrt{21}}{5}\right) - \left(-\frac{7}{25}\right)\left(-\frac{2}{5}\right) \] \[ = -\frac{24\sqrt{21}}{125} - \frac{14}{125} = \frac{-24\sqrt{21}-14}{125} \] For \( \sin(\alpha + \beta) \): \[ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] \[ = \left(-\frac{7}{25}\right) \left(-\frac{\sqrt{21}}{5}\right) + \frac{24}{25}\left(-\frac{2}{5}\right) \] \[ = \frac{7\sqrt{21}}{125} - \frac{48}{125} = \frac{7\sqrt{21}-48}{125} \] Lastly, to find \( \tan(\alpha + \beta) \), we can use: \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] Substituting the previous results: \[ \tan(\alpha + \beta) = \frac{\frac{7\sqrt{21} - 48}{125}}{\frac{-24\sqrt{21} - 14}{125}} = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} = \frac{(7\sqrt{21} - 48)(-1)}{24\sqrt{21} + 14} \] \[ = \frac{48 - 7\sqrt{21}}{24\sqrt{21} + 14} \] That gives you the exact values you are looking for! Enjoy playing with those identities!