Pregunta
upstudy study bank question image url

Im and Difference Formulas Question 29, 5.2.61 Patacts HW Score: \( 90.3 \%, 34,67 \) of 30 points Points: 0.67 of 1 Find the ecact value of the expressions \( \cos (\alpha+\beta) . \sin (\alpha+\beta) \) and \( \tan (\alpha+\beta) \) under the following conditions: \( \cos (\alpha)=\frac{24}{25}, a \) les in quadiant \( V \), and \( \sin (\beta)=\frac{-2}{5}, \beta \) lecs in quadiant III. \( a \cdot \cos (\alpha+\beta)=\frac{-24 \sqrt{21}-14}{125} \) (Simplity your answer Type an exad answer, using radicals as needed. Rationalke all denominators Use integers or fractions for any numbers in the eppession) \( b \sin (a+\beta)=\frac{7 \sqrt{21}-48}{125} \) (Simplity your answer. Type an exad answer, using radicals as needed. Rationalize all denominators. Use integers or flactions for any numbers in the expression) c. \( \tan (\alpha+\beta)= \) \( \square \) (Simplify your answer. Type an evad answer, using radicals as needed. Ratonalke all denominators. Use integers or flactions for any numbers in the expression)

Ask by Maxwell Wright. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \tan(\alpha + \beta) = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \)

Solución

To solve the problem, we need to find the exact values of \( \cos(\alpha + \beta) \), \( \sin(\alpha + \beta) \), and \( \tan(\alpha + \beta) \) using the given conditions. ### Step 1: Determine \( \sin(\alpha) \) and \( \cos(\beta) \) 1. **For \( \alpha \)**: - We know \( \cos(\alpha) = \frac{24}{25} \). - Since \( \alpha \) is in quadrant V, \( \sin(\alpha) \) will be negative. - Using the Pythagorean identity: \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \] \[ \sin^2(\alpha) + \left(\frac{24}{25}\right)^2 = 1 \] \[ \sin^2(\alpha) + \frac{576}{625} = 1 \] \[ \sin^2(\alpha) = 1 - \frac{576}{625} = \frac{49}{625} \] \[ \sin(\alpha) = -\frac{7}{25} \quad (\text{since } \alpha \text{ is in quadrant V}) \] 2. **For \( \beta \)**: - We know \( \sin(\beta) = -\frac{2}{5} \). - Since \( \beta \) is in quadrant III, \( \cos(\beta) \) will also be negative. - Using the Pythagorean identity: \[ \sin^2(\beta) + \cos^2(\beta) = 1 \] \[ \left(-\frac{2}{5}\right)^2 + \cos^2(\beta) = 1 \] \[ \frac{4}{25} + \cos^2(\beta) = 1 \] \[ \cos^2(\beta) = 1 - \frac{4}{25} = \frac{21}{25} \] \[ \cos(\beta) = -\frac{\sqrt{21}}{5} \quad (\text{since } \beta \text{ is in quadrant III}) \] ### Step 2: Use the Sum Formulas Now we can use the sum formulas for cosine and sine: 1. **Cosine of the sum**: \[ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Substituting the values: \[ \cos(\alpha + \beta) = \left(\frac{24}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) - \left(-\frac{7}{25}\right)\left(-\frac{2}{5}\right) \] \[ = -\frac{24\sqrt{21}}{125} - \frac{14}{125} \] \[ = \frac{-24\sqrt{21} - 14}{125} \] 2. **Sine of the sum**: \[ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] Substituting the values: \[ \sin(\alpha + \beta) = \left(-\frac{7}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) + \left(\frac{24}{25}\right)\left(-\frac{2}{5}\right) \] \[ = \frac{7\sqrt{21}}{125} - \frac{48}{125} \] \[ = \frac{7\sqrt{21} - 48}{125} \] ### Step 3: Calculate Tangent of the Sum Finally, we can find \( \tan(\alpha + \beta) \): \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] Substituting the values: \[ \tan(\alpha + \beta) = \frac{\frac{7\sqrt{21} - 48}{125}}{\frac{-24\sqrt{21} - 14}{125}} = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \] ### Final Answers - \( a \cdot \cos(\alpha + \beta) = \frac{-24\sqrt{21} - 14}{125} \) - \( b \cdot \sin(\alpha + \beta) = \frac{7\sqrt{21} - 48}{125} \) - \( \tan(\alpha + \beta) = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \) This is the simplified form of the tangent.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find \( \cos(\alpha + \beta) \) and \( \sin(\alpha + \beta) \), we first need to determine the sine and cosine of \( \alpha \) and \( \beta \) using the provided information. For \( \alpha \) in quadrant IV, we know \( \cos(\alpha) = \frac{24}{25} \). We can find \( \sin(\alpha) \): \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \quad \Rightarrow \quad \sin^2(\alpha) + \left(\frac{24}{25}\right)^2 = 1 \] \[ \sin^2(\alpha) = 1 - \frac{576}{625} = \frac{49}{625} \quad \Rightarrow \quad \sin(\alpha) = -\frac{7}{25} \quad (\text{since } \alpha \text{ is in quadrant IV}) \] For \( \beta \) in quadrant III, we have \( \sin(\beta) = -\frac{2}{5} \) and can determine \( \cos(\beta) \): \[ \sin^2(\beta) + \cos^2(\beta) = 1 \quad \Rightarrow \quad \left(-\frac{2}{5}\right)^2 + \cos^2(\beta) = 1 \] \[ \frac{4}{25} + \cos^2(\beta) = 1 \quad \Rightarrow \quad \cos^2(\beta) = \frac{21}{25} \quad \Rightarrow \quad \cos(\beta) = -\frac{\sqrt{21}}{5} \] Now we can use the angle addition formulas: \[ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Plugging in the values: \[ \cos(\alpha + \beta) = \frac{24}{25} \left(-\frac{\sqrt{21}}{5}\right) - \left(-\frac{7}{25}\right)\left(-\frac{2}{5}\right) \] \[ = -\frac{24\sqrt{21}}{125} - \frac{14}{125} = \frac{-24\sqrt{21}-14}{125} \] For \( \sin(\alpha + \beta) \): \[ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] \[ = \left(-\frac{7}{25}\right) \left(-\frac{\sqrt{21}}{5}\right) + \frac{24}{25}\left(-\frac{2}{5}\right) \] \[ = \frac{7\sqrt{21}}{125} - \frac{48}{125} = \frac{7\sqrt{21}-48}{125} \] Lastly, to find \( \tan(\alpha + \beta) \), we can use: \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] Substituting the previous results: \[ \tan(\alpha + \beta) = \frac{\frac{7\sqrt{21} - 48}{125}}{\frac{-24\sqrt{21} - 14}{125}} = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} = \frac{(7\sqrt{21} - 48)(-1)}{24\sqrt{21} + 14} \] \[ = \frac{48 - 7\sqrt{21}}{24\sqrt{21} + 14} \] That gives you the exact values you are looking for! Enjoy playing with those identities!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad