Question
Use a double-angle identity to find the exact value of each expression \( \sin \theta=-\frac{7}{25} \) and \( \frac{3 \pi}{2}<\theta<2 \pi \) Find \( \cos 2 \theta \)
Ask by Mcfarlane Donnelly. in the United States
Jan 27,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\[
\cos 2\theta = \frac{527}{625}
\]
Solution
To find \( \cos 2\theta \) given that \( \sin \theta = -\frac{7}{25} \) and \( \frac{3\pi}{2} < \theta < 2\pi \), we'll use the double-angle identity for cosine:
\[
\cos 2\theta = 1 - 2\sin^2 \theta
\]
**Step 1: Compute \( \sin^2 \theta \)**
\[
\sin^2 \theta = \left(-\frac{7}{25}\right)^2 = \frac{49}{625}
\]
**Step 2: Apply the Double-Angle Identity**
\[
\cos 2\theta = 1 - 2 \times \frac{49}{625} = 1 - \frac{98}{625} = \frac{625}{625} - \frac{98}{625} = \frac{527}{625}
\]
Alternatively, you can use the identity:
\[
\cos 2\theta = \cos^2 \theta - \sin^2 \theta
\]
First, find \( \cos \theta \). Since \( \theta \) is in the fourth quadrant (\( \frac{3\pi}{2} < \theta < 2\pi \)), \( \cos \theta \) is positive.
\[
\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(-\frac{7}{25}\right)^2} = \sqrt{1 - \frac{49}{625}} = \sqrt{\frac{576}{625}} = \frac{24}{25}
\]
Now, substitute back into the identity:
\[
\cos 2\theta = \left(\frac{24}{25}\right)^2 - \left(-\frac{7}{25}\right)^2 = \frac{576}{625} - \frac{49}{625} = \frac{527}{625}
\]
**Final Answer:**
\[
\cos 2\theta = \frac{527}{625}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To find \( \cos 2\theta \) using the double-angle identity, we can apply the formula \( \cos 2\theta = 1 - 2\sin^2 \theta \). Given that \( \sin \theta = -\frac{7}{25} \), we start by calculating \( \sin^2 \theta \): \[ \sin^2 \theta = \left(-\frac{7}{25}\right)^2 = \frac{49}{625} \] Now, substituting \( \sin^2 \theta \) into the double-angle identity: \[ \cos 2\theta = 1 - 2\left(\frac{49}{625}\right) = 1 - \frac{98}{625} = \frac{625 - 98}{625} = \frac{527}{625} \] Thus, the exact value of \( \cos 2\theta \) is \( \frac{527}{625} \).