\( \frac { \sin ( 180 - \theta ) \tan ( 180 + \theta ) \cos ( \theta + 860 ) } { \cos ( 90 - \theta ) \cos ( - \theta ) \tan ( 360 - \theta ) } \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To simplify the expression \( \frac { \sin ( 180 - \theta ) \tan ( 180 + \theta ) \cos ( \theta + 860 ) } { \cos ( 90 - \theta ) \cos ( - \theta ) \tan ( 360 - \theta ) } \), we can use some trigonometric identities. 1. **Simplifying numerator:** - We know \( \sin(180 - \theta) = \sin \theta \). - For \( \tan(180 + \theta) \), it follows \( \tan(180 + \theta) = \tan \theta \). - The term \( \cos(\theta + 860) \) can be simplified since \( 860 = 2 \times 360 + 140 \) implies \( \cos(\theta + 860) = \cos(\theta + 140) \). Thus, the numerator becomes: \[ \sin \theta \cdot \tan \theta \cdot \cos(\theta + 140) \] 2. **Simplifying denominator:** - We have \( \cos(90 - \theta) = \sin \theta \). - For \( \cos(-\theta) \), since cosine is an even function, we get \( \cos(-\theta) = \cos \theta \). - Finally, \( \tan(360 - \theta) = - \tan \theta \). So the denominator simplifies to: \[ \sin \theta \cdot \cos \theta \cdot (-\tan \theta) = -\sin \theta \cdot \cos \theta \cdot \tan \theta \] Putting it all together, the expression simplifies to: \[ \frac{\sin \theta \cdot \tan \theta \cdot \cos(\theta + 140)}{-\sin \theta \cdot \cos \theta \cdot \tan \theta} \] If \( \sin \theta \) and \( \tan \theta \) are non-zero, they cancel out: \[ \frac{\cos(\theta + 140)}{-\cos \theta} \] This is equal to: \[ -\frac{\cos(\theta + 140)}{\cos \theta} \] Thus, the final simplified form is: \[ -\frac{\cos(\theta + 140)}{\cos \theta} \]