Question
upstudy study bank question image url

\( \frac { \sin ( 180 - \theta ) \tan ( 180 + \theta ) \cos ( \theta + 860 ) } { \cos ( 90 - \theta ) \cos ( - \theta ) \tan ( 360 - \theta ) } \)

Ask by Ortiz Harris. in South Africa
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified form of the expression is: \[ - \frac{\cos(\theta + 140^\circ)}{\cos \theta} \]

Solution

To simplify the expression: \[ \frac{ \sin (180^\circ - \theta) \tan (180^\circ + \theta) \cos (\theta + 860^\circ) }{ \cos (90^\circ - \theta) \cos (-\theta) \tan (360^\circ - \theta) } \] Let's break it down step by step using trigonometric identities: 1. **Simplify Each Trigonometric Function:** - **\(\sin(180^\circ - \theta)\):** \[ \sin(180^\circ - \theta) = \sin \theta \] - **\(\tan(180^\circ + \theta)\):** \[ \tan(180^\circ + \theta) = \tan \theta \] - **\(\cos(\theta + 860^\circ)\):** \[ 860^\circ \mod 360^\circ = 140^\circ \quad \Rightarrow \quad \cos(\theta + 860^\circ) = \cos(\theta + 140^\circ) \] - **\(\cos(90^\circ - \theta)\):** \[ \cos(90^\circ - \theta) = \sin \theta \] - **\(\cos(-\theta)\):** \[ \cos(-\theta) = \cos \theta \] - **\(\tan(360^\circ - \theta)\):** \[ \tan(360^\circ - \theta) = \tan(-\theta) = -\tan \theta \] 2. **Substitute These Simplifications Back Into the Expression:** \[ \frac{ \sin \theta \cdot \tan \theta \cdot \cos(\theta + 140^\circ) }{ \sin \theta \cdot \cos \theta \cdot (-\tan \theta) } \] 3. **Cancel Out Common Terms:** - \(\sin \theta\) cancels out. - \(\tan \theta\) cancels out (assuming \(\tan \theta \neq 0\)). The expression simplifies to: \[ \frac{ \cos(\theta + 140^\circ) }{ -\cos \theta } = -\frac{ \cos(\theta + 140^\circ) }{ \cos \theta } \] **Final Simplified Form:** \[ -\frac{ \cos(\theta + 140^\circ) }{ \cos \theta } \] **Alternatively,** this can be written as: \[ - \frac{\cos(\theta + 140^\circ)}{\cos \theta} \] **Conclusion:** The simplified form of the given expression is: \[ - \frac{\cos(\theta + 140^\circ)}{\cos \theta} \] Answer: After simplifying, the expression is –cos ( θ + 140° ) divided by cos θ. Thus, − cos(θ+140°)/cosθ

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To simplify the expression \( \frac { \sin ( 180 - \theta ) \tan ( 180 + \theta ) \cos ( \theta + 860 ) } { \cos ( 90 - \theta ) \cos ( - \theta ) \tan ( 360 - \theta ) } \), we can use some trigonometric identities. 1. **Simplifying numerator:** - We know \( \sin(180 - \theta) = \sin \theta \). - For \( \tan(180 + \theta) \), it follows \( \tan(180 + \theta) = \tan \theta \). - The term \( \cos(\theta + 860) \) can be simplified since \( 860 = 2 \times 360 + 140 \) implies \( \cos(\theta + 860) = \cos(\theta + 140) \). Thus, the numerator becomes: \[ \sin \theta \cdot \tan \theta \cdot \cos(\theta + 140) \] 2. **Simplifying denominator:** - We have \( \cos(90 - \theta) = \sin \theta \). - For \( \cos(-\theta) \), since cosine is an even function, we get \( \cos(-\theta) = \cos \theta \). - Finally, \( \tan(360 - \theta) = - \tan \theta \). So the denominator simplifies to: \[ \sin \theta \cdot \cos \theta \cdot (-\tan \theta) = -\sin \theta \cdot \cos \theta \cdot \tan \theta \] Putting it all together, the expression simplifies to: \[ \frac{\sin \theta \cdot \tan \theta \cdot \cos(\theta + 140)}{-\sin \theta \cdot \cos \theta \cdot \tan \theta} \] If \( \sin \theta \) and \( \tan \theta \) are non-zero, they cancel out: \[ \frac{\cos(\theta + 140)}{-\cos \theta} \] This is equal to: \[ -\frac{\cos(\theta + 140)}{\cos \theta} \] Thus, the final simplified form is: \[ -\frac{\cos(\theta + 140)}{\cos \theta} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy