a.) \( \frac{6^{x} \cdot 9^{x+1} \cdot 2}{27^{x+1} \cdot 2^{x-1}} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To simplify the expression \( \frac{6^{x} \cdot 9^{x+1} \cdot 2}{27^{x+1} \cdot 2^{x-1}} \), we can start by expressing the bases as powers of 3 and 2: - \( 6^x = (2 \cdot 3)^x = 2^x \cdot 3^x \) - \( 9^{x+1} = (3^2)^{x+1} = 3^{2(x+1)} = 3^{2x + 2} \) - \( 27^{x+1} = (3^3)^{x+1} = 3^{3(x+1)} = 3^{3x + 3} \) Substituting these into the expression, we get: \[ \frac{(2^x \cdot 3^x) \cdot (3^{2x + 2}) \cdot 2}{(3^{3x + 3}) \cdot 2^{x-1}} \] Now, let's simplify. Combining the terms with the same base in the numerator: \[ \frac{2^{x+1} \cdot 3^{x + 2x + 2}}{3^{3x + 3} \cdot 2^{x-1}} = \frac{2^{x+1} \cdot 3^{3x + 2}}{3^{3x + 3} \cdot 2^{x-1}} \] Now, separate the bases: \[ = \frac{2^{x+1}}{2^{x-1}} \cdot \frac{3^{3x + 2}}{3^{3x + 3}} \] Using the properties of exponents: \[ = 2^{(x+1) - (x-1)} \cdot 3^{(3x + 2) - (3x + 3)} = 2^{2} \cdot 3^{-1} \] Thus, simplifying further yields: \[ = \frac{2^2}{3} = \frac{4}{3} \] The final simplified expression is: \[ \frac{4}{3} \]