Question
upstudy study bank question image url

Reduce to reduced row echelon form. \( \left[\begin{array}{ccc}4 & 1 & 21 \\ 2 & 5 & 15 \\ -2 & -1 & -11\end{array}\right] \)

Ask by Coleman Hill. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The reduced row echelon form of the matrix is: \[ \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \]

Solution

To reduce the given matrix to its **Reduced Row Echelon Form (RREF)**, we perform a series of row operations to achieve the following: 1. **Leading 1s** in each pivot position. 2. **Zeros** in all positions above and below each leading 1. 3. **Order** the leading 1s from left to right as you move down the rows. Let's start with the matrix: \[ \begin{bmatrix} 4 & 1 & 21 \\ 2 & 5 & 15 \\ -2 & -1 & -11 \end{bmatrix} \] ### Step 1: Create a Leading 1 in the First Row Divide the first row by 4 to make the first element a leading 1. \[ R1 = \frac{1}{4}R1 \Rightarrow \begin{bmatrix} 1 & \frac{1}{4} & \frac{21}{4} \\ 2 & 5 & 15 \\ -2 & -1 & -11 \end{bmatrix} \] ### Step 2: Eliminate Below the Leading 1 in the First Column - **Row 2:** Subtract 2 times Row 1 from Row 2. \[ R2 = R2 - 2R1 \Rightarrow \begin{bmatrix} 1 & \frac{1}{4} & \frac{21}{4} \\ 0 & \frac{9}{2} & \frac{9}{2} \\ -2 & -1 & -11 \end{bmatrix} \] - **Row 3:** Add 2 times Row 1 to Row 3. \[ R3 = R3 + 2R1 \Rightarrow \begin{bmatrix} 1 & \frac{1}{4} & \frac{21}{4} \\ 0 & \frac{9}{2} & \frac{9}{2} \\ 0 & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \] ### Step 3: Create a Leading 1 in the Second Row Divide the second row by \(\frac{9}{2}\) to make the second element a leading 1. \[ R2 = \frac{2}{9}R2 \Rightarrow \begin{bmatrix} 1 & \frac{1}{4} & \frac{21}{4} \\ 0 & 1 & 1 \\ 0 & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \] ### Step 4: Eliminate Above and Below the Leading 1 in the Second Column - **Row 1:** Subtract \(\frac{1}{4}\) times Row 2 from Row 1. \[ R1 = R1 - \frac{1}{4}R2 \Rightarrow \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ 0 & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} \] - **Row 3:** Add \(\frac{1}{2}\) times Row 2 to Row 3. \[ R3 = R3 + \frac{1}{2}R2 \Rightarrow \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \] ### Final Reduced Row Echelon Form \[ \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To reduce the matrix to reduced row echelon form (RREF), we can use row operations. 1. Start with the original matrix: \[ \left[\begin{array}{ccc}4 & 1 & 21 \\ 2 & 5 & 15 \\ -2 & -1 & -11\end{array}\right] \] 2. Make the leading coefficient of the first row a 1 by dividing the entire row by 4: \[ R_1 = \frac{1}{4}R_1 \implies R_1 = \left[\begin{array}{ccc}1 & \frac{1}{4} & \frac{21}{4}\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & \frac{1}{4} & \frac{21}{4} \\ 2 & 5 & 15 \\ -2 & -1 & -11\end{array}\right] \] 3. Eliminate the first column values below the leading 1 in row 1. Use row 1 to update rows 2 and 3: - For row 2: \(R_2 = R_2 - 2R_1 \) \[ R_2 = \left[\begin{array}{ccc}0 & \frac{19}{4} & \frac{-3}{4}\end{array}\right] \] - For row 3: \(R_3 = R_3 + 2R_1\) \[ R_3 = \left[\begin{array}{ccc}0 & \frac{1}{2} & \frac{1}{2}\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & \frac{1}{4} & \frac{21}{4} \\ 0 & \frac{19}{4} & -\frac{3}{4} \\ 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right] \] 4. Next, make the leading coefficient in row 2 a 1 by multiplying by \(\frac{4}{19}\): \[ R_2 = \frac{4}{19}R_2 \implies R_2 = \left[\begin{array}{ccc}0 & 1 & -\frac{3}{19}\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & \frac{1}{4} & \frac{21}{4} \\ 0 & 1 & -\frac{3}{19} \\ 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right] \] 5. Eliminate the values above and below 1 in column 2. Use row 2 to update rows 1 and 3: - For row 1: \(R_1 = R_1 - \frac{1}{4}R_2\) \[ R_1 = \left[\begin{array}{ccc}1 & 0 & \frac{27}{19}\end{array}\right] \] - For row 3: \(R_3 = R_3 - \frac{1}{2}R_2\) \[ R_3 = \left[\begin{array}{ccc}0 & 0 & \frac{11}{38}\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & 0 & \frac{27}{19} \\ 0 & 1 & -\frac{3}{19} \\ 0 & 0 & \frac{11}{38}\end{array}\right] \] 6. Now, normalize row 3 by multiplying by \(\frac{38}{11}\): \[ R_3 = \frac{38}{11}R_3 \implies R_3 = \left[\begin{array}{ccc}0 & 0 & 1\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & 0 & \frac{27}{19} \\ 0 & 1 & -\frac{3}{19} \\ 0 & 0 & 1\end{array}\right] \] 7. Lastly, eliminate the values in column 3 from

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy