Reduce to reduced row echelon form. \( \left[\begin{array}{ccc}4 & 1 & 21 \\ 2 & 5 & 15 \\ -2 & -1 & -11\end{array}\right] \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To reduce the matrix to reduced row echelon form (RREF), we can use row operations. 1. Start with the original matrix: \[ \left[\begin{array}{ccc}4 & 1 & 21 \\ 2 & 5 & 15 \\ -2 & -1 & -11\end{array}\right] \] 2. Make the leading coefficient of the first row a 1 by dividing the entire row by 4: \[ R_1 = \frac{1}{4}R_1 \implies R_1 = \left[\begin{array}{ccc}1 & \frac{1}{4} & \frac{21}{4}\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & \frac{1}{4} & \frac{21}{4} \\ 2 & 5 & 15 \\ -2 & -1 & -11\end{array}\right] \] 3. Eliminate the first column values below the leading 1 in row 1. Use row 1 to update rows 2 and 3: - For row 2: \(R_2 = R_2 - 2R_1 \) \[ R_2 = \left[\begin{array}{ccc}0 & \frac{19}{4} & \frac{-3}{4}\end{array}\right] \] - For row 3: \(R_3 = R_3 + 2R_1\) \[ R_3 = \left[\begin{array}{ccc}0 & \frac{1}{2} & \frac{1}{2}\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & \frac{1}{4} & \frac{21}{4} \\ 0 & \frac{19}{4} & -\frac{3}{4} \\ 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right] \] 4. Next, make the leading coefficient in row 2 a 1 by multiplying by \(\frac{4}{19}\): \[ R_2 = \frac{4}{19}R_2 \implies R_2 = \left[\begin{array}{ccc}0 & 1 & -\frac{3}{19}\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & \frac{1}{4} & \frac{21}{4} \\ 0 & 1 & -\frac{3}{19} \\ 0 & \frac{1}{2} & \frac{1}{2}\end{array}\right] \] 5. Eliminate the values above and below 1 in column 2. Use row 2 to update rows 1 and 3: - For row 1: \(R_1 = R_1 - \frac{1}{4}R_2\) \[ R_1 = \left[\begin{array}{ccc}1 & 0 & \frac{27}{19}\end{array}\right] \] - For row 3: \(R_3 = R_3 - \frac{1}{2}R_2\) \[ R_3 = \left[\begin{array}{ccc}0 & 0 & \frac{11}{38}\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & 0 & \frac{27}{19} \\ 0 & 1 & -\frac{3}{19} \\ 0 & 0 & \frac{11}{38}\end{array}\right] \] 6. Now, normalize row 3 by multiplying by \(\frac{38}{11}\): \[ R_3 = \frac{38}{11}R_3 \implies R_3 = \left[\begin{array}{ccc}0 & 0 & 1\end{array}\right] \] Matrix becomes: \[ \left[\begin{array}{ccc}1 & 0 & \frac{27}{19} \\ 0 & 1 & -\frac{3}{19} \\ 0 & 0 & 1\end{array}\right] \] 7. Lastly, eliminate the values in column 3 from