Find \( \mathbf{u} \cdot \mathbf{v} \). \[ \|\mathbf{u}\|=25,\|\mathbf{v}\|=15 \text {, and the angle between } \mathbf{u} \text { and } \mathbf{v} \text { is } 5 \pi / 6 \text {. } \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To find the dot product \( \mathbf{u} \cdot \mathbf{v} \), you can use the formula: \[ \mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta) \] where \( \theta \) is the angle between the vectors \( \mathbf{u} \) and \( \mathbf{v} \). Given: \[ \|\mathbf{u}\| = 25, \quad \|\mathbf{v}\| = 15, \quad \theta = \frac{5\pi}{6} \] First, we calculate \( \cos\left(\frac{5\pi}{6}\right) \): \[ \cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2} \] Now substitute the values into the dot product formula: \[ \mathbf{u} \cdot \mathbf{v} = 25 \times 15 \times \left(-\frac{\sqrt{3}}{2}\right) \] Calculating the product: \[ \mathbf{u} \cdot \mathbf{v} = 375 \times \left(-\frac{\sqrt{3}}{2}\right) = -187.5\sqrt{3} \] Thus, the value of \( \mathbf{u} \cdot \mathbf{v} \) is \[ \boxed{-187.5\sqrt{3}} \]