Question
upstudy study bank question image url

Find \( \mathbf{u} \cdot \mathbf{v} \). \[ \|\mathbf{u}\|=25,\|\mathbf{v}\|=15 \text {, and the angle between } \mathbf{u} \text { and } \mathbf{v} \text { is } 5 \pi / 6 \text {. } \]

Ask by Savage Fowler. in the United States
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \mathbf{u} \cdot \mathbf{v} = -\frac{375\,\sqrt{3}}{2} \]

Solution

To find the dot product \( \mathbf{u} \cdot \mathbf{v} \), we can use the formula: \[ \mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta) \] where: - \( \|\mathbf{u}\| = 25 \) is the magnitude of vector \( \mathbf{u} \), - \( \|\mathbf{v}\| = 15 \) is the magnitude of vector \( \mathbf{v} \), - \( \theta = \frac{5\pi}{6} \) is the angle between the vectors. Firstly, calculate \( \cos\left(\frac{5\pi}{6}\right) \): \[ \cos\left(\frac{5\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2} \] Now, substitute the values into the dot product formula: \[ \mathbf{u} \cdot \mathbf{v} = 25 \times 15 \times \left(-\frac{\sqrt{3}}{2}\right) = 375 \times \left(-\frac{\sqrt{3}}{2}\right) = -\frac{375\sqrt{3}}{2} \] **Final Answer:** \[ \mathbf{u} \cdot \mathbf{v} = -\frac{375\,\sqrt{3}}{2} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find the dot product \( \mathbf{u} \cdot \mathbf{v} \), you can use the formula: \[ \mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta) \] where \( \theta \) is the angle between the vectors \( \mathbf{u} \) and \( \mathbf{v} \). Given: \[ \|\mathbf{u}\| = 25, \quad \|\mathbf{v}\| = 15, \quad \theta = \frac{5\pi}{6} \] First, we calculate \( \cos\left(\frac{5\pi}{6}\right) \): \[ \cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2} \] Now substitute the values into the dot product formula: \[ \mathbf{u} \cdot \mathbf{v} = 25 \times 15 \times \left(-\frac{\sqrt{3}}{2}\right) \] Calculating the product: \[ \mathbf{u} \cdot \mathbf{v} = 375 \times \left(-\frac{\sqrt{3}}{2}\right) = -187.5\sqrt{3} \] Thus, the value of \( \mathbf{u} \cdot \mathbf{v} \) is \[ \boxed{-187.5\sqrt{3}} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy