Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { ( a + 4 b ) ^ { 2 } ( a - 4 b ) ^ { 2 } } \\ { ( a ^ { 2 } + 4 a b + 16 b ^ { 2 } ) ( a ^ { 2 } - 8 a b - 16 b ^ { 2 } ) } \\ { a ^ { 4 } - 64 a b - 256 b ^ { 2 } } \end{array} \right. \)

Ask by Coles Willis. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified results are: 1. \( (a + 4b)^2 (a - 4b)^2 = a^4 - 32a^2b^2 + 256b^4 \) 2. \( (a^2 + 4ab + 16b^2)(a^2 - 8ab - 16b^2) = a^4 - 4a^3b - 32a^2b^2 - 192ab^3 - 256b^4 \) 3. \( a^4 - 64ab - 256b^2 \)

Solución

Simplify the expression by following steps: - step0: : \(a^{4}-64ab-256b^{2}\) Expand the expression \( (a + 4b)^2 (a - 4b)^2 \) Simplify the expression by following steps: - step0: Calculate: \(\left(a+4b\right)^{2}\left(a-4b\right)^{2}\) - step1: Multiply the expression: \(\left(a^{2}-16b^{2}\right)^{2}\) - step2: Expand the expression: \(\left(a^{2}\right)^{2}-2a^{2}\times 16b^{2}+\left(16b^{2}\right)^{2}\) - step3: Calculate: \(a^{4}-32a^{2}b^{2}+256b^{4}\) Expand the expression \( (a^2 + 4ab + 16b^2)(a^2 - 8ab - 16b^2) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(a^{2}+4ab+16b^{2}\right)\left(a^{2}-8ab-16b^{2}\right)\) - step1: Apply the distributive property: \(a^{2}\times a^{2}-a^{2}\times 8ab-a^{2}\times 16b^{2}+4aba^{2}-4ab\times 8ab-4ab\times 16b^{2}+16b^{2}a^{2}-16b^{2}\times 8ab-16b^{2}\times 16b^{2}\) - step2: Multiply the terms: \(a^{4}-8a^{3}b-16a^{2}b^{2}+4a^{3}b-32a^{2}b^{2}-64ab^{3}+16b^{2}a^{2}-128b^{3}a-256b^{4}\) - step3: Add the terms: \(a^{4}-4a^{3}b-32a^{2}b^{2}-192ab^{3}-256b^{4}\) Let's break down the expressions step by step: 1. **First Expression: \( (a + 4b)^2 (a - 4b)^2 \)** We can expand this expression using the formula for the difference of squares: \[ (x+y)(x-y) = x^2 - y^2 \] Here, let \( x = (a + 4b) \) and \( y = (a - 4b) \). Thus, we have: \[ (a + 4b)^2 (a - 4b)^2 = ((a + 4b)(a - 4b))^2 = (a^2 - (4b)^2)^2 = (a^2 - 16b^2)^2 \] Now, expanding \( (a^2 - 16b^2)^2 \): \[ = a^4 - 32a^2b^2 + 256b^4 \] 2. **Second Expression: \( (a^2 + 4ab + 16b^2)(a^2 - 8ab - 16b^2) \)** We will expand this expression using the distributive property: \[ = a^2(a^2 - 8ab - 16b^2) + 4ab(a^2 - 8ab - 16b^2) + 16b^2(a^2 - 8ab - 16b^2) \] Expanding each term: - \( a^2(a^2 - 8ab - 16b^2) = a^4 - 8a^3b - 16a^2b^2 \) - \( 4ab(a^2 - 8ab - 16b^2) = 4a^3b - 32a^2b^2 - 64ab^3 \) - \( 16b^2(a^2 - 8ab - 16b^2) = 16a^2b^2 - 128ab^3 - 256b^4 \) Combining all these terms: \[ = a^4 - 4a^3b - 32a^2b^2 - 192ab^3 - 256b^4 \] 3. **Third Expression: \( a^4 - 64ab - 256b^2 \)** This expression is already in its simplest form: \[ = a^4 - 64ab - 256b^2 \] ### Summary of Results: 1. \( (a + 4b)^2 (a - 4b)^2 = a^4 - 32a^2b^2 + 256b^4 \) 2. \( (a^2 + 4ab + 16b^2)(a^2 - 8ab - 16b^2) = a^4 - 4a^3b - 32a^2b^2 - 192ab^3 - 256b^4 \) 3. \( a^4 - 64ab - 256b^2 \) (already simplified)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The expressions you've provided can be derived using the difference of squares and factoring techniques. The first expression, \( (a + 4b)^2(a - 4b)^2 \), simplifies to \( ((a + 4b)(a - 4b))^2 \), giving us a classic difference of squares setup. This can lead to the simplified form \( (a^2 - 16b^2)^2 \). For the second expression \( (a^2 + 4ab + 16b^2)(a^2 - 8ab - 16b^2) \), you can apply the strategies of polynomial algebra, leading to expanded forms before simplifying. In practical application, recognizing these forms can be immensely useful in solving quadratic equations or analyzing algebraic structures, often appearing in physics or engineering problems. Also, when working with these factorizations, always double-check your work by expanding the product again to ensure your result matches the original expressions. A common mistake is omitting or misapplying the negative signs during polynomial distribution, which can lead to completely different outcomes. Happy factoring!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad