1. Diberikan \( G L_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, a d-b c \neq 0\right\} \) grup terhadap operasi perkalian matriks. Diberikan \( S L_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, a d-b c=1\right\} \). Buktikan bahwa \( S L_{2}(\mathbb{R}) \) subgrup dari \( G L_{2}(\mathbb{R}) \). 2. Diberikan \( M_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\} \) grup terhadap operasi penjumlahan matriks Buktikan bahwa \( N=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, a+b=c+d\right\} \) subgrup dari \( M_{2}(\mathbb{R}) \).
Upstudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…