Davies Rodriguez
12/28/2023 · High School
I/ On donne : \( 2,15 \leq x \leq 2,18 \). Détermine une valeur approchée de \( x \), en précisant son incertitude. II/ Ecris les nombres réels suivants sans le symbole de la valeur absolue. (2pts) \( |\sqrt{2}-1| ;|5-\sqrt{19}| ; \quad|-3+\sqrt{17}| ; \quad\left|\frac{3}{7}-\frac{7}{3}\right| \) III Soit deux réels \( x \) et y strictement positifs. (2pts) \( \begin{array}{ll}\text { 1) Développer }(x+y)^{2} . & \text { 2) Démontrer que } \frac{1}{x^{2}+y^{2}} \leq \frac{1}{2 x y} .\end{array} \)
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
**I/ Valeur approchée de \( x \) avec incertitude**
- **Valeur centrale** : 2,165
- **Incertitude** : 0,015
Donc, \( x \approx 2,165 \pm 0,015 \)
---
**II/ Écriture sans valeur absolue**
1. \( |\sqrt{2} - 1| = \sqrt{2} - 1 \)
2. \( |5 - \sqrt{19}| = 5 - \sqrt{19} \)
3. \( |-3 + \sqrt{17}| = -3 + \sqrt{17} \)
4. \( \left|\frac{3}{7} - \frac{7}{3}\right| = \frac{7}{3} - \frac{3}{7} \)
---
**III/ Propriétés des réels \( x \) et \( y \) strictement positifs**
1. \( (x + y)^2 = x^2 + 2xy + y^2 \)
2. \( \frac{1}{x^{2}+y^{2}} \leq \frac{1}{2xy} \) car \( x^2 + y^2 \geq 2xy \) pour tous \( x, y > 0 \).
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit