Use the diagonals to determine whether a parallelogram with vertices \( P(-4,0), Q(0,4), R(4,0) \), and \( S(0,-4) \) is a rectangle, rhombus, or square. Give all the names that apply. \( P R \neq Q S \), so \( P Q R S \) is not a rectangle or a sque The slope of \( \overline{P R}=1 \), and the slope of \( \overline{Q S}=0 \), is not a rhombus. \( P R=Q S \), so \( P Q R S \) is a rectangle or a square. The slope of \( \overline{P R}=0 \), and the slope of \( \overline{Q S} \) is undefined, so \( \overline{P R} \perp \overline{Q S} . P Q R S \) is a square. \( P R \neq Q S \), so \( P Q R S \) is not a rectangle or a sque The slope of \( \overline{P R}=1 \), and the slope of \( \overline{Q S}=2 \), \( P Q R S \) is not a rhombus. \( P R=Q S \), so \( P Q R S \) is a rectangle or a square. The slope of \( \overline{P R}=1 \), and the slope of \( \overline{Q S}=2 \), \( P Q R S \) is not a rhombus. \( P Q=Q R=R S=S F \) so \( P Q R S \) is square.
Upstudy ThothAI Solution
Quick Answer
Step-by-step Solution
Enter your question here…