Cross Smith
02/06/2023 · Primary School
container in the shape of an inverted cone of radius 3 metres and vertical height 4.5 metres is initially illed with liquid fertiliser. This fertiliser is released through a hole in the bottom of the container at a rate f \( 0.01 \mathrm{~m}^{3} \) per second. At time \( t \) seconds the fertiliser remaining in the container forms an inverted cone of eight \( h \) metres. The volume of a cone is \( V=\frac{1}{3} \pi r^{2} h \).] (i) Show that \( h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}=-\frac{9}{400 \pi} \). (ii) Express \( h \) in terms of \( t \).
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
\( h = \sqrt[3]{91.125 - \frac{27}{400\pi} t} \)
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit