John Rojas
08/13/2023 · High School
Exercice 3 On note: \[ F=\left\{(x . y . z . t) \in \mathbf{R}^{4} \mid x+y+2 z+t=0\right\} \] 1. Démontrer que \( F \) est un sous-espace vectoriel de \( \mathbf{R}^{4} \). 2. Expliquer pourquoi \( \operatorname{dim}(F) \leqslant 3 \). 3. Donner une description paramétrique de \( F \). 4. Donner une base de \( F \) et déterminer sa dimension
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
1. \( F \) est un sous-espace vectoriel de \( \mathbf{R}^{4} \) car il contient le vecteur nul, est fermé par l'addition et la multiplication scalaire.
2. \( \operatorname{dim}(F) \leqslant 3 \) car \( F \) est un hyperplan dans \( \mathbf{R}^{4} \).
3. Une description paramétrique de \( F \) est \( (x, y, z, -x - y - 2z) \).
4. Une base de \( F \) est \( \{(1, 0, 0, -1), (0, 1, 0, -1), (0, 0, 1, -2)\) \) et \( \operatorname{dim}(F) = 3 \).
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit