Clark Chang
02/01/2024 · Junior High School
Soi \( f \) une solution non nulle de \( (E): y^{\prime \prime}-\frac{1}{1+t^{2}} y^{\prime}+y=0 \). On note \( q: t \in \mathbb{R}^{+} \mapsto \frac{1}{1+t^{2}} \) 3. Justifier à l'aide du théorème de Cauchy-Lipschitz, que pour tout \( t \in \mathbb{R},\left(f(t), f^{\prime}(t)\right) \neq(0,0) \) 4. En déduire qu'il existe deux applications \( r \in \mathcal{C}^{1}\left(\mathbb{R}^{+}, \mathbb{R}_{+}^{*}\right) \) et \( \theta \in \mathcal{C}^{1}\left(\mathbb{R}^{+}, \mathbb{R}\right) \) telles que \[ \forall t \in \mathbb{R}^{+}, f(t)=r(t) \cos (\theta(t)) \text { et } f^{\prime}(t)=r(t) \sin (\theta(t)) \]
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
For all \( t \) in \( \mathbb{R}^+ \), \( f(t) \) and \( f'(t) \) are both non-zero. Therefore, there exist functions \( r(t) \) and \( \theta(t) \), both continuously differentiable on \( \mathbb{R}^+ \), such that:
\[
f(t) = r(t) \cos(\theta(t)) \quad \text{and} \quad f'(t) = r(t) \sin(\theta(t))
\]
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit