Warren Pritchard
09/11/2024 · Middle School
Esercizio 12.11 Trovare una retta \( r \) passante per il punto \( P=(1,-1,0) \) e parallela al piano \( \pi: 2 x-y+4=0 \). E unica tale retta? Svolgimento Le rette cercate sono infinite, sono tutte quelle che giacciono nel piano parallelo a \( \pi \) e passante per \( P \), che passano a loro volta per \( P \). Il piano che le contiene è \( \pi^{\prime}: 2 x-y=3 \). Per trovare una retta con quella proprieta, basta intersecare \( \pi^{\prime} \) con un piano passante per \( P \). Ad esempio \( \sigma: z=0 \). Allora si ottiene \( r:\left\{\begin{array}{l}2 x-y=3 \\ z=0 .\end{array}\right. \)
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
Esistono infinite rette che passano per il punto \( P = (1, -1, 0) \) e sono parallele al piano \( \pi: 2x - y + 4 = 0 \). Una di queste rette è \( r: \left\{ \begin{array}{l} 2x - y = 3 \\ z = 0 \end{array} \right. \).
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit